File No.

S360-21

GY28-2021-2

Program

Version 8.1

IBM System/360 Time Sharing System

Assembler

This publication describes the internal logic of the
IBM System/360 Time Sharing System (TSS/360) Assembler
Program (also referred to as "the assembler"). The
assembler processes a group of statements written
according to the rules of the TSS/360 Assembler Lan-
guage into a TSS/360 program module. A general
explanation of the four phases of language processing
in the assembler is provided, followed by individual
routine descriptions and flowcharts.

A general understanding of TSS/360 and the rules of
the TSS/360 Assembler Language is assumed. Prerequi-
site to and co-references with this publication are:
IBM System/360 Time Sharing System: Concepts and Faci-
lities, and IBM System/360 Time Sharing System:
Assembler ILanguage.

This publication is intended for use by system pro-
grammers involved in changing system code and in alter-
ing the assembler design.

Logic

Third Edition (September 1971}

This is a major revision of, and makes obsolete, GY28-
2021-1 and Technical Newsletters ¥28-3100, GN28-3129, and
GN28-3138. There are numerous technical changes to this pub-
lication, both in the flowcharts and routine descriptions.
The major changes are summarized below:

e The CXD (CEVCX) routine has been added to Phase I to scan
for the presence of CXD instructions. A new address con-
stant, Q, has been introduced, and a DXD item has been
added to the main dictionary. Several routines have been
altered to process the new CXD and DXD instructions.

¢ The EQU instruction now permits length and type attribute
operands. The EQU (CEVQU} and EQUATE (CEVEQ) routines
have been altered to process the new operands.

e The USE/DROP (CEVUD) routine has been changed to process
a null operand on a DROP instruction. If this situation
occurs, all previously designated base registers are
dropped.

¢ The EBCDTIME (CEVET) routine is obsolete and has been
deleted.

This edition is current with Version 8 Modification 1 of
the IBM System/360 Time Sharing System (TSS/360), and remains
in effect for all subsequent versions or modifications of
TSS/360 unless otherwise noted. Significant changes or addi-
tions to this publication will be provided in new editions or
Technical Newsletters. Before using this publication, refer
to the latest edition of IBM System/360 Time Sharing System:
Addendum, GC28-2043, which may contain information pertinent
to the topics covered in this edition. The Addendum also
lists the editions of all TSS/360 publications that are appl-
icable and current.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page impre-
ssions for photo-offset printing were obtained from an IBM 1403 Printer
using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for reader's comments appears at the back of this publication.
it may be mailed directly to IBM. Address any additional comments con-
cerning this publication to the IBM Corporation, Time Sharing System/360
Programming Publications, Department 643, Neighborhood Rd., Kingston,
N.Y. 12401

© Copyright International Business Machines Corporation 1967, 1969, 1971

The first section of this program logic
manual is an introductory discussion of the
overall concepts of the Time Sharing
System/360 (TSS/360) assembler program. A
number of sections, each associated with a
major component of the program, follows the
introduction.

In addition to a general summary of the
assembler's functions, the introduction
describes the external interfaces between
the assembler and

* Language Processor Control (LPC)
* Symbolic library service routines
* VISAM management service routines

Through its virtual memory management rou-
tines, which issue GETMAIN and FREEMAIN
macro instructions, the assembler also
interfaces with the Virtual Storage Alloca-
tion service routine {(CZCGA).

Section 1 describes the owverall flow of
control only from the language processor
control (LPC) to the phase control level.

Sections 2 and 3 contain summary level
material; Section 2 contains summary by
phases, and Section 3 by instruction type.

Sections 4 through 10 describe the rela-
tionships between phases and routines. The
routine relationships of each major com-
ponent (phase) are shown in an illustration
following the introduction to that phase.
All routines are represented by a box and
an entry in the decision table supporting
the illustration. &1l relationships
between routines are shown with arrows.
Except in the introduction and in Section
1, the arrow represents a call and a return
to the routine from which the arrow points.
In the introduction and in Section 1, the
arrow represents the flow of control. 1In
Section 5, the arrow may represent the
recursive entry of one routine into anoth-
er. This exception is noted in the intro-
duction to Section 5.

The detailed flowcharts for the routines
are presented in Section 11, arranged in
the same order as the routine descriptions.

Section 12 describes all the tables,
table entries, and listing formats referred
to in this manual.

PREFACE

Section 13 describes the assembler's
virtual memory management routines. These
routines manage virtual storage requisition
and return, issuing GETMAIN and FREEMAIN
macro instructions when necessary.

The routine relationships are shown in
terms of levels. A called routine is con-
sidered to be one level lower than the cal-
ling routine. Every box in each routine
relationship's illustration has an Arabic
numeral in the right-hand corner, indicat-
ing the lowest level at which the module
may be called. Phase control routines are
considered to be level 1.

The illustrations showing the routine
relationships are supported by decision
tables. Each routine in an illustration is
supported by an entry in the corresponding
decision table, which lists the conditions
under which that routine calls other rou-
tines. The decision table entries are
placed in their level order; within each
level, the entries are arranged alphabetic-
ally by mnemonic name.

Upon completion of this manual, the
reader will have a comprehensive knowledge
of the internal functions of the TSS/360
assembler program. If more detailed know-
ledge is required, the program listings
should be consulted.

PREREQUISITE PUBLICATIONS

Effective use of this manual requires
knowledge of the information contained in
the following manuals:

IBM System/360 Time Sharing System:
Concepts and Facilities, GC28-2003

IBM System/360 Time Sharing System:
Assembler Language, GC28-2000

In addition, the following publications
may be consulted:

IBM System/360 Time Sharing System:
Dynamic Loader PLM, GY¥28-2031

IBM System/360 Time Sharing System:
Program Control System PLM, GY28-2014

iii

CONTENTS

SECTION 1: INTRODUCTION e e = 2 e e s+ o » e
Purpose of the TSS/360 Assembler Program c e e e e e e
System ENVironment . . . o v & ¢ 4 @ 2 2 o o o o o o o =
Organization and Overall Function of the Assembler . . .
Syntax Analysis « « ¢ ¢ ¢ v v i i 4 4 e 4 e e e e e
Macro Instruction Processing . « « +v « o v o o o o
Assignment of Location Counter Values
Program Reordering . .+ « « o o & o ¢ o o o o o o o @
Machine Instruction Synthesis
POSt-ProcessSing . « « « v &« o 4 o o o o o o o o o o
Assembler Functions ¢ v . . . “ e e e e .
Assembler Control Routine (Interface w1th LPC) . . .
User Virtual Storage Required by Assembler
Working Storage AY€aS .« « v 4 4 2 o o o 2 o o o 4 o o
WOrk Area 1 . v v v v 4 4o 4 4 4 o o o « o o o o o o .
WOTK ATEA 2 & ¢ v v 4 4 ¢ o & o o o o o o o « o o o
Work Area 3 * e e e e e e e s
PMD Text, ISD and External Names LlSt Storage Areas .
Characteristics of Assembler Routines

SECTION 2: ASSEMBLER FUNCTIONAL DESCRIPTION
Phase I Functional Description « & v o o o« . .
Phase IIA Functional Description«
Phase IIB Functional Description .« « « « v o o« o o o . .

Phase IIC Functional Description « ¢ ¢ ¢ & o« . .
Phase III Functional Description
Phase IV Functional Description . . . « ¢ v v v v o o o .

SECTION 3: ASSEMBLER FUNCTION BY INSTRUCTION TYPE . . .
Introduction . . o ¢ ¢ ¢ 4 v 4 e 4 e e e e e e e e e e .
Machine INStructions . . ¢ ¢ ¢ v v v v o o o o o o o o .
Macro InStrUCtioOnNS « v v v 4« 4 « o o o o « o o o o s o« =
Assembler INStrucCtions . .« ¢ ¢ v v v @ v o ¢ o o o o o «

SECTION 4: ASSEMBLER MASTER CONTROL &« « v v 2 v & « o .

Introduction . . - « e 4 s a e 8 e @ o »
AC —-- Assembler Control (CEVAC) « e s s e e s e s o
SECTION 5: PHASE I o ¢ o o ¢ 4 o o o o o o o a o« o o o =
Introduction .« ¢ v ¢ ¢ 4 4 4 4 4 4 e e e e e e e e e e
Routines - . “ e e 4 e e e e e o
PHASE I -- Phase I Control (CEVPA) « e o o e o e e
STAN -- Statement Analyzer (CEVST) . « e e e
REED -- Obtain Next Source Statement (CEVRD) « o e =
GETOP -- Collect and Identify Operation Code (CEVGP)
SUBOP -- Substitute into Operation Code Field (CEVSP)
CATOP -- String Substitution Control (CEVCP)
MIP —-- Machine Instruction Operand Scan (CEVMP) . . .
BASCAN -- Basic Source Language Scan (CEVBS)
AGO/AIF -- AGO/AIF Instruction Scan (CEVGO)
ANOP -- ANOP Instruction Scan (CEVAN)
CCW -- CCW Instruction Scan (CEVCW) v & & o .
CNOP -~ CNOP Instruction Scan (CEVCN)
CXD -- CXD Instruction Scan (CEVCX) « .o 0«
SECT -- Control Section Instruction Scan (CEVCT) .« .
COPY —-- COPY Instruction Processor {CEVCY) e e e s
DC/DS —-—- DC/DS Instruction Scan (CEVDC) . . o « o o .
EJECT -- EJECT Instruction Scan (CEVEJ) . + v o « o .
END -- END Instruction Scan (CEVND) ¢ « « & .
ENTRY -- ENTRY Instruction Scan (CEVEY)
EQU -- EQU Instruction Scan (CEVQU)+ ¢ . .

EXTRN -~ EXTRN Instruction Operand Scan (CEVXN) . . .

OOONNNNVONNUNELEWWNR R

GBLx/LCLx -- Globals/Local Symbol Instruction Scan (CEVGL)
ICTL -- ICTL Instruction Scan (CEVIC) « &« « « .
ISEQ -- ISEQ Instruction Scan (CEVIQ) & « « « o .
LTORG —-- LTORG Instruction Scan (CEVLG) . « « o « o « « «
MACRO -- MACRO Instruction Scan (CEVMC) « s e o
MEND/MEXIT -- MEND/MEXIT Instruction Scan (CEVMX) « o e e
MNOTE -- MNOTE Instruction Scan (CEVMN) « .
ORG -- ORG Instruction Scan (CEVRG) e e e e e
PRINT -- PRINT Instruction Operand Scan (CEVPR) « e e e =
PUNCH -- PUNCH Instruction Scan (CEVPH) . . . 4« v &+ « w «
REPRO -- REPRO Instruction Scan {CEVRE) « « o« + .
SETX -~ SET Instruction Scan (CEVSE) & o & « « =
SPACE -- SPACE Instruction Scan (CEVCE) . . . +« ¢ o« « o« .
TITLE -- TITLE Instruction Scan {(CEVTI) . . e« o
USE/DROP -- USING and DROP Instructions Scan (CEVUD) . .
MACREF -- Macro Reference Processor (CEVRF)
MACDEF -- Macro Definition Processor (CEVDF)
CSCAN —-- Constant Scan (CEVCS) . . . e e e e e s e s
SSCAN -~ String Substitution Scan (CEVSS) « e s e e 2 e
EVAL —-- Expression Evaluator (CEVEV) « &« +v « o .
PSCAN -~ Parameter Item Analyzer (CEVPS)
EBIN -- Binary Self-Defining Term Generator (CEVGB) . . .
EDEC -- Decimal Self-Defining Term Generator (CEVGD) . .
EHEX -- Hexadecimal Self-Defining Term Generator (CEVGH)

ECHAR -- Character Self-Defining Term Generator (CEVGC) .
SLIT -- Scan for Literal Operand (CEVSL)
DLPM -- Dictionary Lookup and Put (CEVLP)
DEFSYM -- Define Location Symbol (CEVSY)
DIAG -- Diagnostic Message Processor (CEVDX)
DLKT -~ Lookup Temporary Dictionary Item (CEVTK)
DPUT ~- Put Item in Temporary Dictionary (CEVTP)
MACLKT -- Macro Name Dictionary Lookup (CEVLM)
MACPUT -- Macro Name Dictionary Put (CEVTM)
DLKM -- Main Dictionary Lookup (CEVKM) . . . ¢ ¢« « <« « .

SECTION 6: PHASE IIA ¢ ¢ o ¢ o o o « o s = o s &«
Introduction . ¢ o & 4 ¢« ¢ 4 ¢ 4 o 2 e = + o o
Conversational Contrcl . . . + &« ¢ ¢ ¢« « o « o
ROULINES + & ¢ o o 2+ o 4 o o o o o a 2 o o o « =
PHASE-ITA —-- Phase IIA Control {(CEVPR) e . .
PARAMAC -- Macro Parameter Processor (CEVPM)

SECTION 7: PHASE IIB . v« ¢ 4« « o o o s o » o o a

Introduction . . ¢ & ¢ 4 ¢ &+ « o o w + o« s e o

Routines « o+ &« . R « e o+
PHASE IIB -- Phase IIB Control (CEVPC) .- .
LOCATE -- Location Counter Assignment (CEVLC)
ORIGIN -- Location Counter Reset (CEVGN) . .
POOLIT -- Literal Pooling Processor (CEVPL) .
EQUATE -- Assign Value to Name (CEVEQ) « e .

RESCON -- Resolve Conditional Alignment (CEVR%)

RESLIT -- Literal Resolution Processor (CEVRL})

SECTION 8: PHASE IIC . ¢ o o 4 o o « « s« o o » «
Introduction . . ¢ & ¢ ¢ ¢ 4 o « o « o o o o o
ROUtIines . . ¢ & ¢ ¢ o ¢« o o o o = o« o o o o« =
PHASE IIC -- Phase IIC Control (CEVPD) . e e
USET -- USING Table Processor (CEVUP)
DRSET -~ DROP Table Processor (CEVDR)

SECTION 9: PHASE ITII . v v o « o 5 o« = s« o o o «
Introduction . .« ¢ ¢ ¢ ¢ o 4 « 4 4 4 « e o o o
ROULINES .+ 4 ¢ & 2o & o o« o o a o o o« « o o o o« =
PHASE III -- Phase III Control (CEVPE) . . .
SLLS —-- Source Listing Processor (CEVSX) . .

-

GATEW -- Interface with VISAM PUT or GTWRC Macro (CEVGW)

ENDPR -- Module Entry Point Processor (CEVEP}

MOPR -- Phase III Machine Operation Processor (CEVMO) . .

GETVAL --

Obtain Relocatable Value (CEVGV) « e e e

USEVAL -- Compute Using Register (CEVUV)
LIST -- Object Program Listing (CEVLS)
CCWTXT -- Phase III CCW Instruction Processor (CEVCC)
PUTVAL -- Relocatable Output Value Processor (CEVPV)
DCTXT -- Phase III Constant Processor (CEVDP)
ADCON -- Address Constant Processor {(CEVAD)
LITXT -- Phase III Literal Pooling Processor (CEVLT)
CSDPR —-- CSD Processor (CEVCD) . ¢« ¢ o o o o o o o =

SECTION 10:
Introduction
Routines . .

SECTION 11:

PHASE IV
XREF -- C
STED -- S
ISDPR --
PMDLS --
Ispsa --

SECTION 12:
Main DIictiCNAYY . o « « « ¢ o o o o o o o o o o o a o « =
Basic FOrmat . . o « o o ¢ o o o o o « o o o o o o «

Absolute

PHASE IV o & o ¢ 4 4 « o « o o o o o« o o o »

e e e e & s & ® e . . e e s @ e e & @ e e

o » @ . - - - - ® e ® e e s e e =

-- Phase IV Control (CEVPF) « o e o e o a @
ross-Reference Listing Processor (CEVXF) . .
ymbol Table Editor (CEVSR} « . .
ISD Processor (CEVSD) .« ¢ & « o o o o o s
Program Module Dictionary Listing Processor
ISD List Processor (CEVSA) . . o« « ¢ o « o &

FLOWCHARTS « & ¢ o 2 o o o o = o o 2 o « o«

TABLES, TABLE ENTRIES, LISTING FORMATS . . .

Value Iteli « « « o o o o o « o « a o« s o o« =

Relocatable Value It€m . .« « ¢ 2 « + « s o o s o s =

DXD Item

a & & = s = e e » e« @ @« © e ® & a e v o e =

Complex Value Item . « « ¢ « ¢« ¢ o e = o « s o« « o

External
control S

Name Ite€M .« « « o « o o = o o o o o o o o »
ection ItemM . « o o 4 o « o 2 2 o o« o o o

Entry Trailer Item . . « ¢ o « o« o « o « o« o o o o »

Literal I

TeM o & ¢ o« 4 ¢ o o ¢ o o & 2 e e 4 e o o

Transitive Item . « o o« o o o o o o « o o o o o o o =
Local Variable Symbol Items . . . « ¢ ¢ o « ¢ « o o
Global Variable Symbol Items « .« « .« + « . .

Sequence

Symbol Iteém . . « <« ¢ o o « o o o o o o +

Logical Order File (LOF) .« ¢ & ¢ 4 4 v o o o o o« o o o =
Machine Operation Entry « « « ¢ ¢ ¢« o o o o &« « o o o

Macro Ins
Literal O
Constant-
Origin En
USING Ent
PRINT Ent
SET Entry

truction EOLTY « + ¢ ¢ ¢ o ¢ o o o« o o o +
Yigin ENETY .« o o o ¢ o o o o o o o o o =
Definition Entry . . « « o ¢ « « « o« o o o« &
LY ¢ ¢ o 4« 4 e e 4 s e s w e s & o & o
TY o o o o = o o s o o o o = o s « o« o o o =
TY o o o o = o o o o o o s o o = o o o« o o o

e @« ® ® & 2+ e e = e « e e * « @ *» @« o s =

Alignment Specification Entry « . . . o . . .

Diagnosti

C MesSsage ENtry « « « « o « = « o o o o o «

MNOTE* ENtLY « « « « 2 o o a o o s o s o o o a o o @

TITLE Ent

END Entry

LY o « o o o o o o 2 a « o« = o o 2 2 o o + «

-« . - - e @ o e s e s 3 »2 e s e e s e

General Format for LOF ENtIYy =« o « ¢ o o « o o o o o
Global Section Macro Chain (GSM) . « . « « & « &« o « « .
Macro Name Dictionary . « « o ¢« ¢ o ¢ o ¢ o o o o o o o =
Operation Code Table “ e e e e e e e e .
Machine Operations Requirements Table « o e s s o o o e =
Using-Register Tables« ¢ ¢ v ¢ ¢ v ¢ 4 o o 4 o « =
Macro Level Dictionary (Temporary Dictiomary)
Item TYPES « o o o o o o o o o o o o« 2 o o o 2 o « =

Comments

e 2 e e s e e e @ ® @8 e a4 s e e & o & = e e

Source Line Storage Control . . ¢ « ¢ « 4+ o ¢« 4« o o e o s
Pseudo-Dicticonary Item for Current Location Counter . . .
Constant Item Format e e e & e & e @
Virtual Memory Management Table (VMTABLE) e e e e s e e
Source Program Listing . « . ¢ o &4 o v ¢ o o o o o o o @
Symbol Table Listing . ¢ « « o ¢ ¢ ¢ 4 ¢ o o o o o o »
Cross-Reference Listing . . . e o s e e e« e e 4 o s
Internal Symbol Dictionary (ISD) LlStlng c s e e e e e

-

(CEVMD)

.105
-106
.106
.107
.107
.108
.109
.109
.110

.112
112
112
-112
.112
-114
114
.115
.115

.116

. 260
. 260
.260
.261
-261
. 262
.263
-264
.265
.266
.266
. 268
.268
. 269
<272
-272
.272
.273
. 273
.274
.275
.275
.276
.276
277
277
.278
.278
.279
-279
.280
.281
.281
.282
.283
. 284
.285
.291
.292
-292
.293
.293
.294
. 295
.296
. 297

uuuuuuu

Program Module Dictionary (PMD) Listing . . .

Object Program Listing . . e o s e o e s
Internal Symbol Dictionary (ISD) e e e o e
Heading e e e e e s e e e e e

Section Name Table “ e 2 o e e s @ o o @
Using Tables ¢ « « & « o .
Symbol Table c « o & = = =
Program Module Dictionary (PMD) « e« o s = «
PMD Heading . « « « « . « e e e e e e
Control Section Dictionary (CSD) . e o w e
CSD Heading .+ + o o o « o« o o« o o« = o 2 = =
Definition Table . . ¢« ¢ « ¢« + & ¢« o « « &
Reference Table « o o e« e o o @
Relocation Dictionary (RLD) e e a4 s e « o a
Modifier Pointer ¢ ¢ ¢ « « 2 o
Modifier . . ¢ & ¢ ¢ o« & o o o « o« o o

RLD for Complex Definitions « . .
RLD for Text External Reference
RILD for Text Internal Reference
Virtual Memory Page Table (VMPT)

SECTION 13: VIRTUAL MEMORY MANAGEMENT
Purpose of Virtual Memory Management Routines
How Virtual Memory Management Works

Routines « o o o & = e « o -
VMGET -- Get VM Worklng Storage (CEVGM) -
VMFREE -- Free VM Working Storage (CEVFM)
VMCLEAN -- Assembler Cleanup (CEVCU) . .

Changing Storage Request Constants
Caution « ¢ ¢ ¢ ¢ 4 s e e e 4 e e = e e . .
Overflow DiagnosSis .« . o « ¢ « o « o s e

APPENDIX A: ASSEMBLER REGISTER USAGE

e @ @+ s % e = e

APPENDIX B: RELATIONSHIP OF DOCUMENTATION MODULES TO ASSEMBLY

MODULES « « ¢ « o s =« s o 2 o o s o« =« o s o =

APPENDIX C: ASSEMBLER LIMITATIONS
Object PrograM . « « « o o s o o o« = o o = =
PMD . . ¢ & ¢ v o o« o o « o o o « o « » o =
TeXt o ¢ o ¢ o o« 4 o « o o o o o a o o+ o
ISD ¢ ¢ o o o 4 4 s 4 e a s 2 a 2 6 o o o =
Source Statements 4 o 4 4 4 4 4 e .
MACYOS &« &« o o o o o o a s a o o = o o« o =
Maximum Statement Length

APPENDIX D: ACRONYMS . . 4 & & o o« « + o o+

-

APPENDIX E: LIST OF MAJOR TABLES AND WORK AREAS

ASSEMBLER ROUTINES . « <« & ¢ ¢« o « « o « o« =«

INDEX o & 4 & ¢ o o s o o o o o o o 5 o o = =

« @ & & e e e+ .

REFERENCED BY

.297
.298
.300
. 300
.300
-300
.300
- 304
.304
.307
. 307
.309
.309
.310
. 310
. 310
.311
. 311
.311
. 311

.312
<312
.312
.312
.312
.313
.313
. 314
. 314
.314

. 316

. 317

.319
-319
.319
.3192
.319
-319
.319
.319

.320

.335

.338

ILLUSTRATIONS

Figure
Figure
only)

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
LTORG,
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

viii

EQU)

53.
54,
55.
56.
57.
58.
59.
60.
61.

Relationship of TSS/360 assembler with outside world . .
TSS/360 assembler interface with LPC (to phase level

Overview of entire assembler function
LPC and assembler interface control flow . . .
Main WOXK areas . .« o . « o o o a o « o » o o«
Overview of Phase I function ¢« .« « .
Overview of Phase IIA function . « ¢« ¢« « « « =
Overview of Phase IIB function
Overview of Phase IIC function . « « « « o« « «
Overview of Phase III function « + .
Overview of Phase IV function e e
Assembler function for machine 1nstruct10ns « -
Assembler function for macro instructions . . .
Assembler function for assembler instructions .
LPC calls and assembler phase control flow . .
Phase I routine relationships
Waiting stack format <« ¢ ¢
Diagnostic text locator entry format
Phase IIA routine relationships
Phase IIB routine relationships
Phase IIC routine relationships
Phase III routine relationships
Phase IIV routine relationships . « . « « « « «
Cross—reference definition format « e e e = =
Reference item format
Absolute value item (EQU) ¢ ¢ ¢« ¢ o o «
Relocatable value item (DC, DS, CXD) « e e e e

« e e . 4261
e e . . <261

Relocatable value item (machine instructions, CCW,

e © ® e e e e e e 8 & e ®© ® @ e e s & e o = e =

DXD item . . . o = e s e 3 s & o e o o s =
Complex value 1tem (EQU) “ o e a e s ° e % o =
External name item (EXTRN) « ¢« « «
External name item (V-type address constant} .
Control section item (CSECT, DSECT, COM, START,

Entry trailer item . . .« ¢ .+« ¢ « ¢ ¢ & ¢ . . .
Literal item . . ¢ ¢ ¢ o ¢ o o « o« o o o o o =
Literal trailer item . . .« ¢ ¢ o ¢ ¢ & o o o =
Transitive item P e+ & s e e s
Subscripted global arlthmetlc 1tem .« o .

« e e . 4262
« e+ o 263
< e e . «263
« < o . L2604
« =« « « 4265
PSECT) . 265
e« <« . 266
- e . . 2267
e e e . 267
e+« . .268
e o+ . .269

Subscript trailer for subscripted global arlthmetlc item, 269

Unsubscripted global arithmetic item
Subscripted global boolean item « . . .
Unsubscripted global boolean item “ e e e e
Subscripted global character item « e e e e e

Trailer item for subscripted global trailer item

Unsubscripted global character item « o o o

Machine operation entry e e e e e e 2 e s s e
Macro instruction entry « e e e e e e e e e .
Literal origin entry . .« « « ¢ ¢ « o o « « o =
Constant-definition entry « .«

Origin entXy . . o o« o« o o « o o o o = o o« o
USING entry e e e 4 s 2 e % e s e e e e o o =
PRINT entry . « o o o o o o o o o o « a « o o =
SET entry « ¢ « ¢ ¢ 4« 4 o o o o o o o a s o o =
Alignment specification entry
Diagnostic message entry . . « « « <« « « « - =
MNOTE* entry .« « ¢ « « o + v o 2 a a « o o s« =«
TITLE entXy « « ¢« o o o o « « o s o o s o o« = &«

END entry . . . e« o o s e a2 s e e s e « o o
General format for IOF entry . « « « o « o «
GSM entry format« ¢ ¢« ¢ ¢ ¢ 4 4 ¢ e o .
Macro name dictionary item

. e« - 2270
e s« o 4270
e . . <270
v e e o« o271

« . . 2271
c e . e 271
e e e o« 2272
e - < . 273
- e o . 2273
e e . o o274
e =« « « 2275
e e« o« 4275
e o« o« o 2276
e e <« « 2276
e e e o« 277
« « -« « 2278
« o - . 278
e e . . +279
e e« « <279
« « « . .280
<« - . 281
<« - . 281

Figure 62. Item format for operation code table entry282
Figure 63. Entry byte format e e e s e e e e e e o s e e = a o s 283
Figure 64. Using-register table format e e 4 e s e = e+ e e« o o o 283
Figure 65. Layout of macro level dictionary . « . « ¢ « & « « « . .285
Figure 66. §SYSLIST item e s e 4 s 2 a2 e 4 o e s s+ = e = = = o o <286
Figure 67. 6SYSNDX it@m . . ¢ ¢ ¢ v o o o o o o o« o s o« s o a s « 286
Figure 68. &SYSECT it@m .« ¢ 4 o « « o o o o o o o « « s o o o« « » 287
Figure 69. &ESYSPSCT IteIM +. o o o o « =« s = o 2 o a « » « o s o« « « 287
Pigure 70. §SYSSTYP item e e o e s s = e s + e e e « 4 = o e« & o 2287
Figure 71. Parameter item (temporary dictionary)288
Figure 72. Sequence symbol item . . <« ¢ . ¢ ¢ ¢« ¢ ¢ ¢« ¢« &+ =« « - - .289
Figure 73. Subscripted LCLA item . . « ¢« ¢ ¢ &+ o o o o« o« » = « =« « 289
Figure 74. Unscripted LCLA item . ¢ ¢ <« o & v o o o o « o « « » o« 289
Figure 75. Subscripted LCLB 1it€l . +« « « o « o o « o« « o« o o o » « 2290
Figure 76. Unsubscripted LCLB item . . . ¢ ¢« & ¢ ¢ ¢ ¢« ¢« o « « o« . .290
Figure 77. Subscripted LCLC item © s 4 e e e e e e e e e« e s s « 2290
Figure 78. Unsubscripted LCLC item e e e e e e e e = e e e s = « 2291
Figure 79. GBLA, GBLB or GBLC item in macro level dictionary . o« <291
Figure 80. Source statement control information format e e e e . 292
Figure 81. Simulated item for location counter references292
Figure 82. Constant item (address constant) « . « « « « « .293
Figure 83. Constant item (other than address constants)293
Figure 84. Contents of VMGOTTEN block . « « ¢ o ¢ & & & o o o o+ o 2294
Figure 85. Contents of VMASSIGN and VMFREED blocks « o e e o e o 294
Figure 86. cContents of VMENTRYS DlOCK . . « ¢ ¢« ¢ ¢ « & o « « - « 294
Figure 87. Source program listing format © e e e e« + e a » e« « <294
Figure 88. Symbol table listing format « « . ¢« «295
Figure 89. Cross-reference listing format ¢« . ¢« « <« « « . .296
Figure 90. ISD Listing Format« . ¢ ¢ & ¢ o o« o o o o« « « « <297
Figure 91. Program module dictionary listing format299
Figure 92. Listing format for constants « . <«301
Figure 93. Listing format for machine and assembler instructions . .302
Figure 94. Assembler internal symbol dictionary303
Figure 95. Program module dictionary entry format305

Table 1. LPC call O AC v - v & &4 ¢ o o o o o o o o « = o« =« o =« =« « 32
Table 2. Assembler control decision table « « ¢ ¢ o« « o« o 32
Table 3. Phase I decision table (part « « « + « « « <« « . . 39
Table 4. Standard variable information table . . <« « . « « « « . . 81
Table 5. Phase IIA decision table . . . ¢ ¢ ¢« ¢« « « o + « « « « « « 88
Table 6. Phase IIB decision table . . <« ¢ ¢ ¢ ¢ ¢ o o o« « « « « « « 89
Table 7. Phase IIC decision table . . . ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ &« ¢« o« o« « « 95
Table 8. Phase III decision table . . . ¢ ¢ ¢ ¢ ¢« ¢ o « o o « « « 2100
Table 9. Phase IV decision table . . <« + ¢« ¢ ¢ ¢ ¢« v « o « « « - 113
Table 10. Directive code assignments . .« « « « « o « o« « = « o« » o« 2282
Table 11. Machine instruction directive codes . . +« « « o o« o « « 2282
Table 12. Virtual storage request constants315

ix

CHARTS

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
CEVCW
Chart
CEVCX
Chart
Chart
Chart
Chart

AN.
AO.
AP.

and CEVND

Chart

AQ.

and CEVQU

Chart
Chart
Chart
Chart

AR.
AS.
AT.
AU.

and CEVLG

Chart
scan)
Chart
Chart

AV,

= CEVMC and CEVMX . . . ¢ ¢ ¢ ¢ « o o « o o = o « a s « « =

AW.
BA.

and CEVPR

Chart
Chart

BB.
BC.

AC (assembler control) = CEVAC ¢ .+ v ¢ o ¢ o o o o « &
PHASE I (Phase I master control) - CEVPA « ¢ o & « « .
STAN (statement analyzer) - CEVST . . . ¢« u o « « «
REED (obtain next source statement) - CEVRD . . o .
GETOP (collect and identify operation code) - CEVGP .
SUBOP (substitute into operation field) - CEVSP
CATOP (string substitution control) - CEVCP
MIP (machine instruction operand scan) - CEVMP
BASCAN (basic source language scan) - CEVBS
AGO/AIF (AGO/AIF instruction scan) - CEVGO . . « o « « .
ANOP and CCW {ANOP and CCW instruction scan) - CEVAN and
CNOP and CXD (CNOP and CXD instruction scan) - CEVCN and
SECT (control section instruction scan) - CEVCT
COPY (COPY instruction processor) - CEVCY . « .+
DC/DS (DC/DS instruction scan) = CEVDC v & « 4 « o o « «
EJECT and END (EJECT and END instruction scan) - CEVEJ

ENTRY and EQU (ENTRY and EQU instruction scan) CEVEY

EXTRN (EXTRN instruction operand scan) - CEVXN
GBLx/LCLx (global/local symbol instruction scan) - CEVGL
ICTL (ICTL instruction scan) — CEVIC v ¢ ¢ o 2 o « = « =«
ISEQ and LTORG (ISEQ and LTORG instruction scan)} - CEVIQ

e e @ @ @ = & * e e * e« © @ a s @ s e @& ® e ® e = e e a

MACRO and MEND/MEXIT (MACRO and MEND/MEXIT instruction

MNOTE (MNOTE instruction scan) = CEVMN . . ¢ +« « « « «
ORG and PRINT (ORG and PRINT instruction scan) - CEVRG
SETX (SET instruction scan) = CEVSE . . 4« ¢ = « ¢ « « =
SPACE and TITLE (SPACE and TITLE instruction scan)

CEVCE and CEVTI e e e s s s e s e e e w e e e e

Chart BD. USE/DROP (USING and DROP instruction scan) - CEVUD . . .
Chart BE. MACREF (macro reference processor) ~ CEVRF . « . . « .«
Chart BF. MACDEF (macro definition processor) - CEVDF
Chart BG. CSCAN (constant scan) - CEVCS . . . ¢ ¢ ¢ o ¢ « o o o« =
Chart BH. SSCAN (string substitution scan) - CEVSS « . .
Chart BI. EVAL (expression evaluator) — CEVEV . . . « « o o o o «
Chart BJ. PSCAN (parameter item analyzer) - CEVPS - e e
Chart BK. EBIN and EDEC (binary and decimal self-defining term

generator) - CEVGB and CEVGD o . « e e e e .
Chart BL. EHEX and ECHAR (hexade01mal and character self—deflnlng
term generator) -~ CEVGH and CEVGC e e e e+ e s e e =
Chart BM. SLIT (scan for literal operand) - CEVSL “ e e e e e e
Chart BN. DLPM (dictionary lookup and put) - CEVLP
Chart BO. DEFSYM (define location symbol) - CEVSY
Chart BP. DIAG (diagnostic message processor) - CEVDX
Chart BQ. DLKT and DPUT (lookup and put in temporary dictionary

item) - CEVTK and CEVTP o = . « s s e e e
Chart BR. MACLKT and MACPUT (macro dlctlonary lookup and put) -

CEVLM and CEVTM . . « « « . . e e s e s e “ e e e 4 e a2 e o
Chart B5. DLKM (main dictionary lookup) - CEVKM e e e e e e e e
Chart BT. PHASE IIA (Phase IIA control) ~ CEVPB . +« + v 4 o o« +« .
Chart BU. PARAMAC (macro parameter processor) - CEVPM
Chart BV. PHASE IIB (Phase IIB control) — CEVPC ¢ « & + .
Chart BW. ORIGIN (location counter reset) — CEVGN
Chart CA. POOLIT (literal pooling processor) - CEVPL . . « « . . .
Chart CB. EQUATE (assign value to name) - CEVEQ .+ « « ¢ « &« o« « &«
Chart CC. RESCON (resolve conditional alignment) - CEVRS
Chart CD. RESLIT (literal resolution processor) - CEVRL

.117
.118
-119
.123
-125
.126
-127
-128
-131
.134

.135

.136
.137
.138
-139

.140

.141
.143
-144
.145

.146

.147
.148

.149
.150

.151
.152
.153
.155
.156
.160
.164
-172

.173

174
.175
.176
-177
.178

.180

.181
.182
.183
.184
.187
.192
.193
-194
-196
.198

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
CEVMD
Chart
Chart
Chart
Chart

CE.
CF.
CG.
CH.
CI.
CJd.
CK.
CL.
CM.
CN.
CO.
CP.
CQ.
CR.
Cs.
CT.
CU.
Cv.
CW.
DA.
DB.
DC.
DD.
EA.
EB.
EC.

PHASE IIC (Phase IIC control) - CEVPD
USET (USING table processor) - CEVUP
DRSET (DROP table processor) - CEVDR
PHASE III (phase III control) - CEVPE

SLLS (source listing processor) - CEVSX

GATEW (interface with VISAM PUT macro

)

-

-

-

CEVGW

ENDPR (module entry point processor) -~ CEVEP .
MOPR (Phase III machine operation processor)
GETVAL {(cobtain relocatable value) - CEVGV

USEVAL (compute using register) - CEVUV

LIST (object program listing) - CEVLS

-

-

CCWTXT (Phase III CCW instruction processor) -

CEVCC
PUTVAL (relocatable output value processor) - CEVPV

DCTXT (Phase III constant processor) - CEVDP . .

ADCON (address constant processor) - CEVAD
LITXT (Phase III literal pooling processor) - CEVLT

CSDPR (CSD processor) - CEVCD . . .
PHASE IV (Phase IV control) - CEVPF

-

XREF (cross-reference listing processor)

STED (symbol table editor} - CEVSR .
ISDPR (ISD processor) - CEVSD . . .

PMDLS (program module dictionary listing

- s . - e e & & s e .

ISDSA (ISD list processor) - CEVSA .

VMGET (get VM working storage) - CEVGM .

VMFREE (free VM working storage) - CEVFM

VMCLEAN {assembler cleanup) - CEVCU

processor)

.

-

-

-

- CEVXF

-

-

.

.199
. 200
.201
.202
.208
. 210
. 211
.212
. 223
. 224
.225
.231
.233
. 235
.238
. 242
. 243
. 246
. 247
. 248
. 249

.250
. 255
. 256
. 257
. 259

PURPOSE OF THE TSS/360 ASSEMBLER PROGRAM

The purpose of the TSS/360 assembler
program is to produce, from source programs
written in the assembler language, machine
language programs in a format suitable for
operation under the time sharing system.
Outputs from the assembler program are:

* Source program listing

® Program Module Dictionary

* Program Module Dictionary listing
s Cross-reference listing

e Symbol Table listing

¢ Internal Symbol Dictionary

¢ Internal Symbol Dictionary listing
®* Object program listing

s Binary Text

¢ External Name List

SYSTEM ENVIRONMENT

The initial request by the user to
secure the assembler is processed by the
command analyzer and executor (CASE), which
calls the language processor control (LPC).
The language processor control calls the
assembler, whose modules, resident in Ini-
tial Virtual Memory, are linked during
startup.

As shown in Figure 1, the assembler
makes use of:

* Language processor control to supply
user program source statements.

e Symbolic library service routines to
secure library definitions.

¢ Data management services to process
output list data sets.

The assembler is called by and exits to
the language processor control (LPC). The
GETLINE function of LPC receives source-
language statements from a system input
device and directs them to the assembler
for processing. Conversely, the assembled
program and diagnostic messages are routed
from the assembler to the same system out-
put device via the PUTDIAG function of LPC.

SECTION 1: INTRODUCTION
;»—-—- —_— e ——— .
Command Port of
- ’ / Analyzer Command |
- & Executor | System l
Input/Output
Device .q_k/\ l ? |
{ \ Language |
Processor
l Control |
I . _
VISAM Data
Library e

™ Management
le—]| Service
Routines

TS5/360 Assembler

Retrieval
Routines

v |

GETMAIN and
FREEMAIN
Service
Routines

Figure 1. Relationship of TSS/360

assembler with outside world

In order to process COPY statements and
macro instructions not defined by the user,
the assembler searches user and system
macro libraries. The library retrieval
routines are used to accomplish this
function.

An object program listing is automatic-
ally created for the user unless he stipu-
lates otherwise. The source program list-
ing, program module dictionary listing,
cross-reference listing, symbol table list-
ing, and the internal symbol dictionary
listing must be requested by the user in
his ASM command. Both the conversational
and nonconversational user can choose
between having the selected listings
printed immediately on SYSOUT, or having
them stored in a VISAM list data set. The
default for conversational is a listing
data set; for nonconversational the default
is SYSOUT. If entered in a VISAM data set,
the user's requested listings become mem-
bers of a generation data group containing
two generations. The generation data group
is established the first time the module
name is encountered. The most current
listing data set (relative 0) and the last
previous listing data set (relative -1) are
always maintained. PRINT LIST.module-name.
generation-number must be issued by the
user when he desires the data sets to be
printed.

Section 1: Introduction 1

Input/
Ovutput
Device Diagnostics
and Assembled
Program
Source
Statements
Language
Processor
Contrel
_. T —
TSS/360 Assembler
Source Statements Assembler Assembled Program Listings
Master
Control
| Request for additional
i Source Statements; Diagnostics
Interface
Continuve
Return to LPC Assembly
Machine
END Language
Statement Text .
Phase T Phase TL A Phase II B Phase IT C _?cﬁse_ﬂ—l—b Phase T
Macro Location - Machine P ost~
Synh}x’ Instruction Counter Rxog;arrt Instruction Prcicess?n
Analysis Processing Assignment eordering Synthesis 9
Figure 2. TSS/360 assembler interface with LPC (to phase level only)

Virtual storage dynamically acquired by
the assembler is secured by the GETMAIN
macro and released by the FREEMAIN macro.
These macros are issued by special virtual
memory management routines.

ORGANIZATION AND OVERALL FUNCTION OF THE
ASSEMBLER

As shown in Figure 2, the assembler is
divided into four major components or
phases, plus an assembler control module
which interfaces with LPC.

The principal function of any assembler
is to translate computer instructions writ-
ten in a symbolic language into the more

abstract, numeric language of the computer
itself. This is accomplished principally
by allowing alphameric symbols of the pro-
grammer*'s choice to represent the numeric-
ally addressed storage locations in the
computer. The assembler's primary task is
to determine which symbols have been
defined, according to the rules of the
assembler language, assign a corresponding
machine-language value to the symbol, and
to substitute the machine-language value
whenever the symbol is used in the con-
struction of a machine-language
instruction.

In addition to this principal function,
most assemblers also:

* Provide for the specification of numer-
ic and alphameric data constants.

®* Permit one symbol to be defined in
terms of others.

¢ Recognize a vocabulary of control
statements that apply to the assembly
process itself (rather than the machine
program under construction).

¢ Allow predefined sequences of source
language statements to be generated and
modified through use of a higher-level,
machine-independent language (a "macro
instruction"™ language).

The System/360 Assembler language con-
tains all the above features; the method
and order of their processing by the TsS/
360 assembler is described in general terms
below.

Syntax Analysis

In order for the assembler to interpret
a statement without ambigquity, the pro-
grammer must follow certain rules in writ-
ing the source statement with regard to
Separation of fields, placement of symbols
and delimiters, proper choice of mnemonic
operation codes, and the like. The some-
what mechanical inspection of the source
Statement to determine whether the rules
have been observed is generally called
"syntax analysis,"™ and is the first opera-
tion performed by the assembler on each
statement. The analysis is achieved by a
character-by-character scanning of the
incoming statement; since this method of
analysis is time consuming, the assembler
usually converts the information that has
been extracted from the statement into a
more convenient internal form and places it
in one of the various tables that are kept
for this purpose. The principal tables are
One that contains a condensed summary of
each statement (the Logical Order File or
LOF), and one that contains the name and
characteristics of each programmer-defined
symbol (the symbol table or "dictionary®).

The definjtion of a symbol must be known
to the assembler before it can construct a
machine instruction that requires the value
of the symbol. However, the rules of the
language permit a symbol to be referred to
before it is defined. If the assembler
attempted to construct the machine-language
program concurrently with syntax analysis,
it would find itself frequently unable to
do so for lack of information about symbols
that had not yet been encountered. For
this reason, construction of machine
instructions is postponed until the entire
source program has been syntactically ana-
lyzed and all symbols have been entered
into the dictionary.

Macro_Instruction Processing

A macro instruction is the invocation of
a predefined sequence of source statements
through use of a mnemonic operation code
that has been declared for that purpose.
The mnemcnics of macro operations may be
specified by the programmer himself, along
with the sequence of statements that the
operation represents, or, failing that, by
the table of contents of a library of pre-
defined macro operations that is present as
part of the operating system. In either
case, the assembler's dictionary of symbols
cannot be considered complete until the
sequences of statements represented by
macro instructions have been syntactically
analyzed.

In theory, macro instruction sequences
may be processed either:

e Before the user's statements (by
searching the source program only for
macro instructions and by merging their
expansion into the user's statements).

® Concurrently with the user's statements
(by incorporating the expansion into
the program as encountered).

e After the user's statements. The first
method is used by other System/360
assemblers. The TSS/360 assembler,
however, is committed to producing dia-
gnostic messages for syntax errors for
the benefit of a terminal user, and
this requirement forces the assembler
to process the user's statements first,
as received.

Because system macros require the attri-
butes of the user's symbols, and because
there is no ordering rule (requiring the
user's symbols to precede system macro
calls), expansion of macros concurrently
with the user's statements is also ruled
out. Macros must be expanded by a second
phase (Phase IIA) of the assembler after
the user's statements have been syntactic-
ally analyzed.

Expansion of source statements from the
predefined sequence in the macro definition
involves the recognition of a class of sym-
bols (variable symbols and parameters)
which are independent of the symbols used
in machine lanqguage statements. Since
these symbols are used only temporarily
(and may be used repetitively with 4if-
ferent meanings), it is to the assembler's
advantage to maintain them in a dictionary
which is separate from the one used for
machine-language symbols.

In addition, the expansion of one macro
instruction frequently results in the invo-
cation of some "inner" or "nested”™ macro

Section 1: Introduction 3

instruction. The rules of the macro lan-
guage are such that it is desirable for the
assembler to maintain a separate dictionary
for each nested macro level. The rules of
the macro language are also such that once
the instructions have been generated for a
given macro level, the dictionary for that
level is no longer required and can be dis-
carded, since symbols at each level are
independent. For this reason, macro level
dictionaries are constructed linearly in
working storage, and maintained by push-
down-stack logic.

Since the definitions of system macros
are not part of the original user's source
language input, they must be retrieved from
a library and added to the source program
at the appropriate time. Since library
retrieval is time consuming, it is desir-
able to avoid retrieving a macro unneces-
sarily, and to retrieve each definition
only once. This is achieved by performing
library retrieval during the Phase IIA of
the assembler; at this time those "nested”
macro calls that are to be bypassed because
of conditional assembly techniques are dis-
carded, thus preventing their definitions
from being unnecessarily retrieved.
Moreover, a record is kept (in a special
dictionary of macro names) whenever a
definition is brought in; the definition is
condensed into the intermnal form common to
all statements, and need not be retrieved
again should the macro instruction be rein-
voked. This technique prevents multiple
retrievals of the same definition.

Assignment of Location Counter Values

Once the additional statements generated
by macro instructions have been inco-
rporated into the source program, all poss-
ible and potential definitions of symbols
are present in the dictionary. Before
machine-instruction synthesis can begin,
however, the (relative) machine address
which each symbol represents must be deter-—
mined. The value of the machine-address is
arrived at by maintaining a location count-
er for each control section in the assemb-
ly. The counter is set to zero initially
and is increased at each statement by the
number of bytes of machine storage repre-
sented by the preceding instruction, con-
stant, or storage reservation. Since macro
instructions may generate instructions,
constants, and storage reservations, the
location counter cannot be assigned until
macros have been expanded.

In those assemblers which expand macros
first, the location counter can be assigned

during syntax analysis; since the TSS5/360
assembler defers macro expansion until
Phase IIA (for the reasons noted above),
location counter assignment is also
deferred. For a better paging profile and
ease of maintenance, Phase IIA is limited
solely to macro expansion activity, and a
separate phase, IIB, is used to perform the
location counter assignment. As a bypro-
duct of its principal activity, Phase IIB
also resolves expressions that are depen-
dent upon location counter values, and
collects literal constants into literal
pools and assigns location counter values
to them.

Program Reordering

It is a requirement of TSS/360 object
program modules that, to facilitate load-
ing, all text and relocation information
pertaining to a given control section be
present contiguously in the object module.
It is also a language rule that control
sections may be written discontinuously in
the source program, and that certain state-
ments in the language (USING, DROP, LTORG,
PRINT, etc.) have effect over a range of
statements in the original source order,
irrespective of the number of different
control sections represented by that range
of statements.

The TSS/360 assembler is therefore faced
with a reordering requirement. It must
collect the scattered portions of a given
control section, without losing the effect
of certain statements that are control sec-
tion independent. It is the function of
Phase IIC to determine where each control
section has been broken into discontinui-
ties, and to prepare for each such break a
table summarizing the effects of those
statements that are independent of control
section order. This analysis enables the
machine instruction synthesis phase (Phase
III) to collect the portions of a given
control section and produce contiguous out-
put text in the program module.

Graphically, Phase IIC tramsforms a pro-
gram from:

r 1
| Section 1 | USING-1
¢ - -
i Section 2 |
b 4 USING-2
| Section 1 |
L ¥]
r R 1
| Section 3 |
b 1 USING-3
| Section 2 |
L i |

r’.
2

r 1
| Section [} USING-1
= = - = - - - - - - -
| 1 |} USING-2
i]
L] 1
| Section |} USING-1
fi- - - - - - - - - - -|} USING-2
| 2 |} USING-3
2 1
| |} USING-2
| Section 3 |} USING-3
i J

Machine Instruction Synthesis

When the reordering requirements have
been resolved, the assembler is ready to
begin the construction of machine-language
instructions from their source language
equivalents. Phase III performs this syn-
thesis, working from a list of control sec-
tions in such a way that each control sec-
tion, however discontinuously written, pro-
duces contiguous output text and relocation
information for the loader. An expression
evaluation routine, using information
stored in the dictionary, resolves each
machine-instruction operand to either a
relocatable or absolute value. Appropriate
text and relocation information is entered
into the object module. Source and object
program listings are a byproduct of this
phase.

Post-Processing

When the assembly is complete and the
object module has been produced, a series
of post-processing routines may be called
to operate upon the dictionary and other
information left by preceding phases to
produce sorted listings of the dictionary,
cross-references to symbols, and analytical
printouts of the various output modules.
For convenience these routines are
collected into Phase IV of the assembler.

ASSEMBLER FUNCTIONS

Figure 3 is an overview which depicts
the function and output of each of the four
major assembler components. Note that
Phase II is divided into three discrete
parts, Phases IIA, IIB, and IIC.

A brief description of each phase func-
tion is given below and a more detailed
description is given in succeeding chap-
ters. For ease of understanding, the
assembler control module is described last
in this section.

Assembler Control Routine (Interface with
LPC)

The assembler has three entry points
from the language processor control (LPC).

Each entry point is to a location in the
assembler control routine (CEVAC), from
which control is transferred to the
assembler location where the function is
accomplished. Similarly, the two exits
from the assembler to the LPC are also via
the assembler control module.

The three entry points to the assembler
control module are: to Phase I control
(CEVPAA, Initiation), to Phase IIB control
(CEVPAB, Continuation), and when abnormal
termination is indicated (CEVPAZ,
Early-end).

The two entry points of the LPC are:
when the next line is desired, and when a
diagnostic message is to be printed.

Figure 4 shows the flow of control
between the LPC and the assembler.

The user informs the LPC an assembly is
requested, through the command language.
The LPC then solicits the necessary operat-
ing parameters and enters the assembler at
Phase I control for initialization. Com-
mand System PLM, GY28-2013, contains

details of this operation.) Then the
assembler enters the LPC to obtain the
first source statement, and the LPC returns
the call with the statement. The assembler
processes the source statement and enters
the LPC for the next statement. In an
error-free assembly, this process is con-
tinued until an END statement is read, at
which time entry is made from Phase I con-
trol directly to Phase IIA control.

Upon completion of Phase IIA, control is
transferred to the LPC. If the assembly is
in conversational mode, the LPC queries the
terminal user whether to continue with the
assembly, or correct the source program and
restart.

e If the user wishes to continue, Phase
IIB control is entered and the assembl-
er proceeds to completion without
further conversational interaction.

¢ If the user makes corrections and
wishes to restart, the LPC reenters
Phase I control to restart the
assembly.

The flow described above is altered au-
tomatically when the LPC determines a
source line has been corrected, or the
assembler discovers a source statement
error.

When the assembler discovers an error in
conversational mode, it calls the LPC with
a diagnostic message, and LPC transmits the
message to the system device (SYSOUT). LPC
returns the call, and the assembler again
calls the LPC for the next source
statement.

Section 1: Introduction 5

asl
Bunsi] Qwd

(1) Aouoyzig
JoquiAg pusaju
Bulisi 2|qo) joquidg
Buys|] ausiajay $5040)

suoyajsp
- uRY3 WSO

151] Bwop [oussxy
xa)

(Qwd) Apuoyiaig
5[npoyy wpiBol g
Bupsiy

woibou g 128lq0)
Bupsry

sbonbury soineg

.

suojydo ndino
pa4oa|ss aonpoud o}
sioss9001d Jsod 5| o) @

uoyowIoguy
uoyoO0 a1 pup

%@} Alpuiq s3dnpoly
suoyy29s {ouyuod Aq
woiboid saz;u0bicy
suoyansuL

40 Buyssaosd

[ouly S[o4U0D @

T #soyg

Ingr

S —
suoi4a(ap

PUD SUOH IPPY

- UIPYD WSO

sayqp) Jagsibay Buisp e

3|qp | abosn) afoy

sjoquiAs

|j© 104 BAIPA 184uN0D

SjUB WAL
AYLNG sessadouy

SDLDUC DI
|8AS] LIODY @

PanD0IS=501DW

104 SjuawaIDIg

SO Y| 9P
puD suo L} ippE

- Uy WSO e

su014ippo

~ Adpuoioig) uipyw

SUOLIPPD - 407 @

(HOT) 2112
sapQ 031607
uioyy

(W5 D) osppy
295 1990]9)
ApUoyo1Q UIDW
pavanis - sjUBWa oIS
331005 |ouBLIC)

p

Uoi400G| Syndwosy e
s{qoAjoses A|snojasid
JoU sjuawInIs q
pUB (D3 |{D 58550044 @
8/904
wayy siajua
§95500044 ®

uooas
|034u0 Jo BIUBLNIOO
uodn siaysiBs ONISM) |
pup ‘siaqunu O¥QL]
‘|oaue) INIYd

40 $N4D45 SYP|NGDY

J @SPy 0 A|QUSSSD §in4sal pup
wplBoid aa1n0s 1901100 Abw sasp

16 ‘uolyoniajuy
|OUCHRSIBAUCD JBYHNY OU
Ui A[quassp enu 4uod Apuw Jasn ¢

{oquids u;
puo sjnIa,

.

(opous |,Au09) 51010
594001put !sjoquAs
pougjapun loj saydinag
suol{oniisul

©040DW ||D spundxy

——

U LONIYSU Y

AYLNZ PUR T DYOLT
‘4O OIS
“ENIYg “sebiny2
BWDU UoyDas jogo|l
7 SUDERNISUL 0J20W
40 paoved p sdeay

aspic
00160 04 s{uswa;Dis
Youniq |BUOLpUOIUN
4q paipiauab
$jUBWRIDIS SPPY

010D 185N 59553004 g
Aipuolyaip
ut sjoquiAs

40 suonuap

(o] 9is si9ju3
(spow

j.AU02) solsaubolp
saanposd !spupiado
JUBWBIDIE SUDDG
soyysouboip

douia ssanposd
“xojuds sezhjouy
S{UBW34B4S 924NOS
0 UOSISA pepodUS
144Rd SBUSH qRisy
souanbas
sulpjulow - aBoioys
o4uy auy| abonBuo)
924n0$ $81do7)
aboiojs Bupjiom
papaau suiigO

»

O I1 @soY4q

9T S50y _ oy [a—oat [«

v I #soyd

1

[#50yg

48| quesso

pun D4} usamiag
32D§J34U} UD SaPIACId

(Ov) [onuey
IBi50y I8 |quiassy

—

a|npous §2alqo smolg ®
$o1450uUBRIp SpIUSUDL] @

19| UIBSSD Of SJUBLIDIDS

224N05 §)IUSUDI| @

(2d1) Jeaue)
sassao g abonBum

82148
Andin g, Anauy

Overview of entire assembler function

3.

Figure

Call
Assembler

)

Next Line

e
in

e (LPC)

—

Return with B
Next Line Phose] ;
- Cond A
O S Transmit ok i
Put Diagnostic mad
Diagnostic T
Return to i

(LPC
fLFO) Assembler

|
|
|
|
|
|

{Initiation
Return)

Processor
Caontrol

{LPC;

Assembler
Conirol .
{Continuation

Entry/Raturn)

Enter
Phase 16

and Continue

Phases 18,
e, fland I¥

|
|
|

o Abriormal Termination {Early End) not Shown

& Shaded Areas: Assembler

LPC and assembler interface
control flow

Figure 4.

If the LPC determines a source line has
been corrected, it enters Phase I control
with a special return code and the lowest
line number to which corrections have been
made. If the line number that LPC returns
is greater than that of the next to last
statement processed, the assembler pro-
cesses the corrected statement and requests
the next source statement from the LPC. If
the line number is not greater than that of
the next to last statement processed, the
assembler reinitializes itself and starts
over again by requesting the first source
statement from the LPC.

If the assembly is interrupted by an
Attention interruption, and a call is made
to the LPC, the early-end entry of the
assembler cleanup routine is called to
release working space in virtual storage.
Return is then made to the LPC.

USER VIRTUAL STORAGE REQUIRED BY ASSEMBLER

WORKING STORAGE AREAS

The TSS/360 assembler operates in and
uses virtual storage as the communication
medium for most of its input and output
data. When the ASM command is given, LPC,
the assembler, and all subprograms required
by them are loaded into the user's virtual
storage. In addition, the assembler

requests virtual storage dynamically for
temporary and working storage.

Virtual storage is requested with the
GETMAIN macro instruction. Assembler rou-
tines requiring working storage do not
request it from the system directly; they
go through the assembler's own management
routines, which minimize the number of GET-
MAIN and FREEMAIN instructions issued.
(This is discussed in detail in Section
13.)

The amount of virtual storage area
requested by various assembler routines is
controlled by constants in CSECT CEVPAS.
Privileged system programmers (authority
code 0) may change these constants to
accommodate an exceptionally large assemb-
ly, such as assembling another language
processor. (Refer to "Changing Storage
Request Constants"™ in Section 13.)

If the assembler overflows its work
areas, it will dynamically request addi-
tional virtual storage and continue proces-
sing if the storage is both available and
addressable.

The three main work areas obtained
dynamically by the assembler are outlined
in Figure 5.

Work Area 1

The first page of Work Area 1 is
reserved for pointers, work areas, and com-
munication cells used between modules.
During Phase IIA a part of Work Area 1 is
used to store the macro level dictionaries
needed for macro expansion. During Phase
IIB the macro level dictionaries are over-
laid with page usage tables. During Phase
IIC using-register information overlays the
page usage tables developed in Phase IIB.
During Phase III the unused portion of Work
Area 1 is used to hold sort keys for the
cross-reference listing. The Phase III
LIST routine uses the Operation Code Table
as a work area for editing generated state-
ments for the object listing.

Work Area 2

The first page of Work Area 2 also con-
tains module cells, pointers, and communi-
cation cells used between modules. The
second section is used for the main dic-
tionary, the logical order file, and a
secondary information list required for
macro expansion (global-section-macro
chain). Each type of information is struc-
tured as a list and is used as an open-
ended working storage. During Phases I and
IIA continued lines are carried in this
area. During Phase III the previously
unused portion of Work Area 2 is used as
working storage for the construction of

Section 1: Introduction 7

various elements of the control section
dictionaries.

Work Area 3

During Phase I Work Area 3 is used to
hold incoming source statements for
reference in later phases. During Phase
IIA this area is used to hold statements
generated by macro expansion.

PMD Text, ISD and External Names List
Storage Areas

In addition to the three work areas

described above, the assembler secures four

additional virtual storage areas. The
first area is for the PMD minus its asso-
ciated text. 1Its size is equal to the
number of binary text pages divided by

WORK AREA 1 WORK AREA 2

eight, plus two pages. The second area is
equal to the number of pages required to
contain the output binary text. The third
area is for the ISD (if requested); it
equals the number of pages in Work 2. The
fourth area secured is for the external
name list associated with the PMD. The
locations of all four areas are passed to
the LPC upon assembler completion.

CHARACTERISTICS OF ASSEMBLER ROUTINES

There are no hardware configuration
requirements for any of the assembler rou-
tines. Most of the routines are reenter-
able, nonresident with respect to the sys-
tem, nonprivileged, and closed; those that
are not are specified as being so in the
individual routine descriptions.

WORK AREA 3

Static Working Storage

Static Working Storage

Hash Table for Symbol Table

Hash Table for Macro Names

LI IT:

Operation Line)
Code Table Edit 1,0

Continued Lines

Symbol Table {Including
‘Macro Names)
Logical Order File

Macro Generated Statements

Original Source Statements

Macro Generated Statements

Cross -Reference ltems

GSM Chain

o-A: I-B: I-cC:

Macre Page Using -

(Local) Usage Register Continved Lines

Level Tables Tables

Diction A

aries
Im: m

C S D Working Storage

Figure 5. Main work areas

SECTION 2:

ASSEMBLER FUNCTIONAL DESCRIPTION

PHASE I FUNCTIONAL DESCRIPTION

Phase I is called by the language pro-
cessor control program (LPC).

It is the

function of LPC to supply line-image items

to the assembler,
quest.

cne at a time, upon re-
The source language line is then

copied by the assembler into its own work-

ing storage to facilitate references in 3.
subsequent phases and to serve as the input

data for a source-language listing, when

such is requested.

Since the assembly language permits

transfers of assembler control and itera-
tion over a set of source statements, the
logical order of the assembly may be dif-

ferent from the sequential order.

A prin-

cipal function of Phase I is to establish a
partially encoded version of the source
statements (the logical order file) to
establish the logical order of the
assembly.

An overview of Phase I function is shown
in Figure 6.

The numbered paragraphs in

the following description correspond to the
numbered boxes in Figure 6.

1.

Upon receiving control, Phase I calls
VMGET to acquire two areas of virtual
storage for its own working storage
requirements. Initial and default
values and beginning addresses for
variable storage are inserted into the
static portion of working storage.
Static working storage is also modi-
fied as a result of the operating
parameters transmitted by the LPC.
Having established the source program
data set as the current input source,
control is transferred to the state-
ment analyzer for the program to be
processed.

The statement analyzer controls the
processing of each source language
statement in order by using a collec-
tion of specialized subroutines. It
produces the symbol dictionary, the
global-section-macro (GSM) chain, and
the logical order file (LOF) from
which Phase III produces the output
program module. It has two modes of
operation: normal and bypass. In the
normal mode, source lines are cbtained
and processed to produce some change
in the information compiled by the
assembler to further the production of
an object program. The bypass mode is
initiated by the processing of an AGO

Section 2:

or true AIF command whose transfer
point is a sequence symbol that is as
yvet undefined. In this mode, source
lines are merely bypassed until a line
containing the desired sequence symbol
is encountered, at which point normal
processing is resumed.

REED is called by the statement ana-
lyzer to obtain the next source state-
ment. REED provides the interface
with LPC to obtain source lines. It
concatenates continuation lines to
provide the statement analyzer with a
continuous statement, performs
sequence checking, and switches the
source of input statements between
LPC, macro definitions, and COPY-
library statements, as required. REED
obtains source lines directly from the
language processor control (LPC) or
from a library when obtaining a macro
definition to satisfy a macro instruc-
tion. During Phase IIA the principal
source of input is the macro expansion
mechanism rather than the LPC.

Regardless of its origin, a source
line may be in either keyboard or card
image format and a source statement
may comprise multiple source lines,
through the statement continuation
capabilities. 1In obtaining the next
source statement, if REED encounters a
source line that is continued, all the
portions of the statement are combined
into a single continuous line that is
constructed in assembler working
storage. REED is also responsible for
performing and commenting diagnostic-
ally upon failures in the sequence
check demanded by the prevailing ISEQ
reqguirements.

REED provides the capability to
furnish the conversational user with
the ability to correct or delete the
last source statement presented to the
processor without incurring restart of
the entire assembly. It records the
internal status of the assembler as
each source statement is completed.
Thus, at any time prior to commencing
the processing of the next statement,
the effect of the current statement
can be erased by replacing the current
status information with the previous
status, and by detaching from linkage
chains any dictionary items con-
structed since the previous status was
recorded.

Assembler Functional Description 9

CEVPA

Macro

Phase I Control Reference

® STﬁhJ ®

MACREF

Statement
Analyzer Indicate Presence

of Macro Ref

O —

@ REED

Get Next

Source Line

CEVPA @

End

DEFSYM

Create Dict
Item if Symbol
in Name Field

SUT

Scan Operand
for Literals

No

Individual
Routines for
Assembler or
Machine Inst

Phase I Control

of Source
fnput
?

To Phase ITA

Figure 6.

10

Macro
Definition

MACDEF

Process Prototype
or Model Stmt

CATOP

Perform String
Substitution

Machine

Instruction
?

Overview of Phase I function

REED initializes the construction
of a logical order file (LOF) entry,
by setting the entry to zero. The LOF
entry, which represents the encoded
form of the statement, is built at a
temporary location. REED calls GETOP,
which determines the required length
of the LOF entry, based upon the type
of statement being processed. GETOP 4.
isolates the operation mnemonic (via
SUBOP) and identifies it (by doing a
binary search on the operation code
table) as a machine operation code,

Set Up Encoded
Form of Statement

Was
This an
End Stmt
?

CEVPA

Phase I Control

Exit
To Phase 1A

assembler instruction, user macro, or
library macro. The directive code,
which classifies the statement as to
type of machine instruction or
assembler mnemonic, and the operation
code are placed in the LOF entry by
GETOP.

If the end of source input in a pre-
stored data set has been encountered,
and no END statement was provided, the
LPC will supply an END statement. A
diagnostic is issued stating that the

END card is missing. The LPC will
return to the assembler, which will
process the END statement. Because
the END statement signals the end of
the phase, control is then passed to
Phase IIA.

If the current statement is either a
macro prototype statement or a model
statement, the macro definition pro-
cessor (MACDEF) is called. If the
statement is a prototype, a macro name
item is constructed in the main dic-
tionary. The operation code is looked
up in the operation code table and, if
a match is found, a diagnostic is
issued warning that an operation mne-
monic has been redefined by a macro
definition.

The redefinition indicator is
turned on in the matching operation
code table entry. The dictionary item
for the macro name is completed by
MACDEF by inserting the location of
the LOF entry for the prototype line
and the location of the prototype line
itself. The former is used by the
macro reference processor (MACREF) in
initializing the REED soubroutine to
read the definition when the macro is
expanded. The latter is used by the
PARAMAC routine in Phase IIA to estab-
lish a temporary macro-level dic-
tionary when the macro is expanded.

If the current statement is a model
statement, a diagnostic will be issued
if the operation code is ISEQ, ICTL,
or END. COPY statements cause MACDEF
to call the COPY subroutine, which
reads in the library element and
pushes down the input-source switch in
REED so the subsequent statements ori-
ginate from the library. Thus, copied
statements become part of the macro
definition and not part of the
expansion.

All statements pass through the string
substitution control routine (CATOP).
This routine controls the type and
amount of parameter and variable sym-
bol substitution that is applied to
the current source statement. It is
called before the statement is deli-
vered to the components of the state-
ment analyzer for processing. Substi-
tution will have been performed arbi-
trarily on the operation code field by
SUBOP (via GETOP) prior to identifica-
tion of the operation mnemonic. CATOP
calls the string substitution scan
routine (SSCAN) to perform string sub-
stitution on the name and operand
fields. Whenever substitution actual-
ly results in character string repla-
cement on a statement, a new version

Section 2:

10.

of the statement reflecting the sub-
stitution is produced to replace the
original line for all subsequent pro-
cessing. After substitution, CATOP
calls the basic scan routine (BASCAN)
to analyze the contents of the name
field. CATOP then determines the
start of the operand field and posts
the increment from the beginning of
the statement in the current LOF
entry.

All machine instructions pass through
the define location symbol routine
(DEFSYM). 1Its purpose is to construct
and enter into the main dictionary a
relocatable value item that represents
the name field symbol (if present) of
the current source statement. DEFSYM
calls the main dictionary lookup and
put routine (DLPM) to look up the sym-
bol in the dictionary and construct a
skeletal item. DEFSYM completes the
skeletal dictionary item according to
the type of the current operation code
and reserves the space for the item.
The location of the item is then
entered into the current LOF entry.

If the current statement is a machine
instruction, and the assembler is in
nonconversational mode, the scan for
literal operand routine (SLIT) is
called in lieu of the complete operand
field analysis routine. Its function
is to scan the operand field to deter-
mine whether a literal operand
(denoted by the character =) is pre-
sent. If a literal is found, the
location of the = in the source state-
ment is added to the current logical
order file entry.

If the current statement is a macro
instruction, the macro reference pro-
cessor (MACREF) is called. MACREF is
responsible for indicating the pre-
sence of the macro instruction. An
entry for the GSM chain is constructed
to cause the expansion of the macro
instruction in Phase IIA.

If the assembly is conversational, and
the current statement is a machine
instruction, the machine instruction
operand scan (MIP) is called to scan
the operand and check for valid
operand fields and correct formatting.

If the assembly is in either batch
or conversational mode, and the cur-
rent statement is an assembler mnemon-
ic, individual routines will be called
for each mnemonic. These routines are
described below.

Assembler Functional Description 11

12

AGO/AIF: The sequence symbol appear-
ing in the statement is processed and
the input source is reset to an earli-
er symbolic statement, if backward;
or, if forward, a bypass mode is
instituted.

ANOP: The name field is checked for
the presence of a sequence symbol.

CCW: DEFSYM is first called to create
a dictionary item if there is a symbol
in the name field. The operand is
examined for valid operand fields and
correct format if the assembly is in
conversational mode. Otherwise, SLIT
is called to scan the operand for the
presence of literals.

CNOP: If the assembly is in conversa-
tional mode, the operand fields are
examined and checked for validity.

COM: Described under SECT.

COPY: The desired element is retri-
eved from the library and copied into
working storage in the form of chained
source lines. The input-source switch
of REED is set to retrieve forthcoming
statements from the copied stack.

CSECT: Described under SECT.

CXD: DEFSYM is first called to create
a dictionary item if there is a valid
symbol in the name field. Upon return
from DEFSYM, the current logical order
file is completed, and a constant item
is constructed.

DC/DS: DEFSYM is first called to cre-
ate a dictionary item if there is a
symbol in the name field. The con-
stant scan routine, CSCAN, is called
to process the operand field and con-
struct a constant item. Attributes
are obtained from the constant item
and posted in the current location
symbol item, if there is one. If the
end of the operand field was not
reached by CSCAN, an additional logic-
al order file entry is created and
CSCAN called again. Thus, individual
logical order file entries are con-
structed for each operand of a mul-
tiple operand statement.

DROP: Described under USE/DROP.
DSECT: Described under SECT.

EJECT: The only processing required
at this time is a check to determine

if the name field is blank.

END: An indicator is set to the
effect that the END statement has been

encountered. If the assembly is in
conversational mode, the operand field
is examined and checked for validity.

ENTRY: The name field is checked for
blanks or a sequence symbol, and a GSM
entry is constructed. If the assembly
is in conversational mode, the basic
scan routine (BASCAN) is called to
collect and examine each operand
field.

EQU: At this time only an EQU in
which the first operand expression
yields an absolute or complex value
can be fully processed. An absolute
or complex value item is created in
the dictionary, and the length and
type attribute fields are evaluated
and processed. Other operand types
cause a transitive item to be created
and an indicator to be set in the log-
ical order file entry to demand atten-
tion in Phase IIB.

EXTRN: Each symbol in the operand is
collected and an external name item
constructed for each.

GBLX/ICLX: If the statement occurs
within a macro, an item is constructed
in the temporary dictionary; if the
operation is global, an item is also
constructed in the main dictionary.

If the statement occurs outside a
macro, an item is constructed in the
main dictionary. If a subscript is
present, it is checked for validity
and its value inserted into the dic-
tionary item. If the operation is
global and is not Phase IIA, a GSM
entry is constructed.

ICTL: Checks are made to determine if
the statement is the first source pro-
gram statement, and if there is only

one ICTL in the assembly. The routine
checks if each operand field is valid.

ISEQ: The operand fields are examined
for validity and indicators set with
the new values.

LCLX: Described under GBLX/LCLX.

LTORG: DEFSYM is called to create a
dictionary item if a symbol is in the
name field. A GSM entry is created
and the logical order file entry is
flagged for special attention in Phase
IIB.

MACRO: After the statement is checked
for syntax, the macro definition
switch is set to 1 and control is
returned to the statement analyzer.

MEND: Processed by MEND/MEXIT rou-
tine. If the macro definition mode is
set, it is canceled and an immediate

return is made. This condition pre-
vails during the processing of macro
definitions. If the macro definition
mode is not set, MEND executes ident-
jcally with MEXIT.

MEXIT: Processed by MEND/MEXIT rou-
tine. The space occupied by the cur-
rent macro level dictionary is
reclaimed. The macro level is reduced
by one, and the location of the logic-
al order file entry for the statement
at which processing stopped on the
preceding macro level is reinstated in
the REED input switch. If the macro
level has been reduced to zero, the
REED input switch is popped up to its
previous mode.

MNOTE: The first operand is examined
and, if it is an asterisk, the
character string that follows is
treated as a comment. Otherwise, the
character string is considered a diag-
nostic message and causes a special
call to the diagnostic processor.

ORG: The logical order file entry is
flagged for the attention of Phase
IIB. If the assembly is conversation-
al, the operand field is examined for
validity.

PRINT: An entry is made in the GSM
chain so that the effect desired by
the source programmer can be produced
by subsequent processing by control
section. The operand field is tested
for the legitimacy of its contents.
PSECT: Described under SECT.

PUNCH: The statement is allowed only
to maintain compatibility with 0S/360
and is made commentary.

REPRO: The instruction produces list-
ing only; the following statement will
also be treated as commentary.

SECT: The symbol in the name field or
blank denoting blank COMMON (and
binary zero denoting a blank CSECT) is
used as the basis for a main dic-
tionary lookup and, if the symbol is
not in the dictionary, a section-name
item will be created for it. An entry
is inserted into the GSM chain and,
for control sections other than DSECT
or START, the operand field is
examined for attribute declarations.
The operand of a START is processed
like that of an ORG statement, and an

Section 2:

11.

12.

ORG logical order file entry is
generated following the START entry.
The operand of a DSECT is not
examined.

SETX: The symbol in the name field is
looked up in the main or current macro
level dictionary to verify if an item
exists for it. The operand expression
is now evaluated, and the value is
posted in the item. If a global sym—
bol is being set, and if in Phase I, a
GSM entry is made for the statement.

SPACE: If the assembly is conversa-
tional, the operand field is examined
for validity.

START: Described under SECT.
TITLE: The name field is saved for
later use in card identification.
character string in the operand is

saved for later use in printing the
assembly listing.

The

USE/DROP: For USING instructions, the
first operand field is evaluated to
see that it is walid. For either
USING or DROP, the register designa-
tions are examined for validity. A
GSM entry is created for either
instruction. No operand examination
is completed if the assembly is in
batch mode.

If the current statement implies
source code, and a control section has
not been declared, a logical order
file entry will be set up for an
implied CSECT. A GSM chain entry will
also be constructed for the implied
CSECT. After all generated entries
have been constructed in working
storage, the logical order file entry
for the current statement is moved
from its temporary location into work-
ing storage and the previous entry
linked to the current one.

If the current statement is an END,

exit is made from the statement ana-
lyzer to the Phase I control, which

then passes control to Phase IIA.

PHASE IIA FUNCTIONAL DESCRIPTION

Phase IIA is responsible for the expan-

sion of macro instructions and, when
required, the retrieval of system macro

definitions from the library.

During Phase

I a record is maintained for all macro

instruction source statements;

Phase IIA

completes the processing of those
statements.

Assembler Functional Description 13

Macro statement generation is accomp-
lished by substituting the character-string
values of the current arguments for the
corresponding parameters in the definition.
The macro definition statements remain in
the seguenced source statement area in the
virtual storage of the assembler. The
source statements generated by macro
instructions are also retained in the vir-
tual storage of the assembler; they do mnot
become part of the set of sequenced state-
ments. When the generation of each new
symbolic statement is complete, the state-
ment is subjected to standard Phase I pro-
cessing and is assembled as if it had been
part of the user's original source program.
Most of the processing routines which were
present in Phase I are present in Phase IIA
also; however, Phase IIA acts as an intern-
al replacement for LPC in determining the
order and origin of the source statements.

As a corollary to the processing of
macros, Phase IIA must reevaluate state-
ments that affect global variable symbols
and must maintain a record of control sec-
tion and print status changes. Before con-
cluding, Phase IIA also presents global
diagnostic messages to the conversational
user and calls LPC to determine whether to
continue the assembly.

An overview of Phase IIA function is
shown in Figure 7. The numbered paragraphs
in the following description correspond to
the numbered boxes in the figure.

1. Activity in Phase IIA is controlled by
the entries in the GSM chain. This
chain is prepared during Phase I and
contains entries for each macro
instruction, GBLxXx instruction, SET
statement involving a global symbol,
PRINT, and change of control section.
Other entries in the GSM chain are not
pertinent to Phase IIA.

2. If a control section GSM is encoun-
tered, it is necessary to retrieve the
location of the section name item in
the main dictionary and point the cur-
rent control section indicator to this
item. This pointer may also be
updated by the control section proces-
sor (SECT) if a control section state-
ment occurs during a macro expansion.
The section name item is used to esta-
blish the various values for ESYSECT
as macro expansion proceeds.

3. If a GSM entry representing a GBL sta-
tement at the user level is encoun-
tered, it is necessary to reprocess
the statement to ensure synchroniza-
tion of user-defined global variable
symbols with the macros expanded dur-
ing this phase. At the first rede-

14

claration of each symbol the initial
value of the item is reset to the null
state.

If a GSM entry representing a SET
statement at the user level is encoun-
tered, it is also necessary to repro-
cess the statement to maintain the
synchronization of global variable
symbols established above. The value
of the global symbol originally
obtained in Phase I is retained in the
logical order file and is reinstated
by Phase IIA.

The basic scan routine (BASCAN) is
called for either a GBL or SET state-
ment to preset pointers for the Phase
I routine for the instruction. The
appropriate GBL or SET routine in
Phase I is then called. The GSM entry
is removed from the chain, and proces-
sing continues with the next GSM
entry.

Encountering a GSM entry for a PRINT
instruction causes the print status to
be replaced with that carried in the
LOF entry pointed to by the PRINT GSM.

When a GSM entry representing a macro
instruction is encountered, Phase IIA
control calls upon the statement ana-
lyzer to process the macro instruc-
tion. The statement analyzer, being
phase-conscious, calls the macro
reference processor, MACREF, which
determines if the macro is at the user
level (macro definition exists in
storage).

If the macro definition is not in
storage, the macro is a library macro.
The library service routines, CEVMLA
and CEVMLB, are employed by MACREF to
search the library for the desired
macro and to retrieve the lines of the
macro definition. Lines are retrieved
and are linked together in working
storage. A mode switch is set so that
the REED routine can process the
statements from the library instead of
in normal mode.

The statement analyzer is entered at a
special entry point (CEVST1) from
MACREF to call the REED routine to
initiate construction of logical order
file entries for the definition state-
ments. After the statement analyzer
processes the statements, the logical
order file entries for them will be
delinked from the main chain, but
maintained for subsequent reference.
The statement analyzer returns control
to MACREF after processing the MEND
statement of the library macro.

P

i

Conversational
Mode ?

Check Trans.
ttem Chain and
Diagnose Undefined
Symbols

©)

QUERY

Call LPC to
Solicit Cont.
Information

AAAAAAA s
(EXIT)

Figure

®

No

Phase ITA

(ENTER)

~

Get Location
of Next
GSM Entry

End of
Chain ?

Control
Section

Save Location
of Dictionary
ltem

Macro
Instruction

GBLX
or SETX

Reset Print

No

Status

7.

O—r

BASCAN

Scan
Statement

STAN

Statement
Analyzer

MACREF

Process
Macro

Reference

| No

Appropriate
GBL or SET
Routine in
Phase 1

DELINK
Entry From
GSM Chain

CEVMLA

Find Symbolic
Component Parcel

|

CEVMLB

Retrieve Successive
Parcel Lines

I
|
Y

STAN

Set up Encoded
Form of Macra
Def. State.

s

PARAMAC

Construct
Macro Level
Dictionary

Get Next
Statement

CATOP

Perform String
Substitution

0

Overview of Phase IIA function

Section 2:

Machine
Instruction

Macro
Reference

Individual
Routines for
Assembler or
Machine Inst.

l

Set up
Encoded
Form of
Statement

Is
Statement
MEND ?

Was This
an Quter Level
Macro ?

DEFSYM

Create Dict
ltem if Symbol
in NAME Field

Batch Mode ?

SLIT

Scan Operand
for Literals

Assembler Functional Description

15

10.

11.

12.

16

After it is ensured that the macro
definition exists in storage, the
macro parameter processor, PARAMAC, is
called by MACREF to expand the macro.
Temporary dictionaries are created by
PARAMAC for each outer and inner macro
instruction level. The symbolic para-
meters in the macro prototype state-
ment and the corresponding positional
operands or name field in the macro
instruction are combined to form para-
meter items in the temporary dic-
tionary. Each item is identified by
the symbolic parameter, which is
hashed and linked to an entry in the
macro hash table for the current
level. Each temporary dictionary con-
tains the linkage and status informa-
tion necessary to initiate an inner-
macro expansion, to purge the tem—
porary dictionary of an inner macro
after expansion is complete, and to
resume processing of the macro at the
next higher level. The remainder of
the dictionary at each level contains
a reduced hash table followed by para-
meter items representing the system
variables and symbolic parameters spe-
cified in the macro definition. PARA-
MAC returns control to MACREF which,
in turn, returns control to the state-
ment analyzer.

The statement analyzer calls REED to
initialize processing for the next
statement. The model statements are
fed through the main routines of Phase
I (that is, CATOP, DEFSYM, SLIT, and
the appropriate individual routine) in
the same way as user statements were
fed through in Phase I. The logical
order file entry for the generated
statement is constructed in working
storage and is flagged as representing
a generated statement.

If the MEND for the outer level macro
has not been encountered, processing
continues as in 8.

When a MEND is encountered for the
outer level macro, processing of the
macro instruction is complete. The
GSM entry for the macro instruction is
removed from the chain and processing
continues with the next GSM entry. If
the macro with which the MEND is asso-
ciated is not an outer level macro,
processing continues as in 8.

When all GBL, SET, PRINT, control sec-
tion, and macro instruction entries in
the GSM chain have been processed,
Phase IIA passes over the transitive
items in the main dictionary and
extracts all symbols that remain unde-
fined if the assembly is in conversa-
tional mode. These symbols are repre-
sented in the dictionary by transitive

items that have not been completed by
the insertion of the location of the
matching definition. Diagnostic mes-
sages are produced for each symbol.

13. Control is given to the entry of LPC
which solicits continuation informa-
tion from the conversational user. If
the user elects to continue, control
returns to the assembler at "continua-
tion"™ entry point, and assembly
resumes with Phase IIB.

PHASE IIB FUNCTIONAL DESCRIPTION

At the conclusion of Phase IIA, the
entire source program has been fully
scanned once. It is the task of Phase IIB
to organize the results of this initial
scan so that the object text can be
generated in a single pass over the intern-
al representation of the program. The
principal function of Phase IIB is to
assign location counter values to symbols
and literal constants.

The areas requiring resolution are:
Boundary Alignment: The generation phase

requires space unused because of boundary
adjustment to be claimed explicitly.

Literal Assignment: For each literal
reference, the value and length of the con-
stant is to be computed and duplicates are
suppressed.

Literal Pooling: As dictated explicitly by
LTORG statements or implicitly by the pro-
gram end, literals are to be arranged by
their length modulo 8 and assigned location
counter values.

Symbol Definition: All definitions, unless
erroneous, must now be capable of resolu-
tion by the assignment of a location count-
er or absclute value, as appropriate.

An overview of Phase IIB function is
shown in Figure 8. The numbered paragraphs
in the following description correspond to
the numbered boxes in the figure.

1. Phase IIB makes a single pass over the
logical order file; the processing
that is performed depends upon the
characteristics of the entry in the
logical order file. The entries may
be grouped into three categories:
location counter adjustments, literal
operands, and normal statements.
Location counter adjustments may be
further subdivided into changes of
control section, literal origin state-
ments, ORG statements, and conditional
storage reservation statements (such
as CNOP or DS statements).

Phase 11B

{ ENTER)
©

Get Location
of Next
LOF Entry

® |

POOLIT

Pool Remaining
Literals in
First CSECT

PSECT
Available

POOLIT

Paol Remaining
Literal adcons
in first PSECT

O

@

Retrieve Loc

©®

Cont Sect Counter and
Reserve Page
Table
@ LOCATE
LTORG Named Line Assign Current
Loc Counter
Value to NAME
. \ @ ORIGIN POOLIT
ranc
on tnst ORG Position of . -] Generate
Type Current Literal
Loc Counter Pool
@ ¢) CSCAN
. rocesse
DC, DS, or DXD in Phase 1 No Prepare
5 Constant
Item
Yes
:: EQUATE RESCON
EQU Evaluate Exp
B ' Compute
Assign Value Al
10 NAME ignment
CNOP (:) =<E>

Compute Page
Usage for
Each Control
Section

(EXIT)

To Phase IIC

Figure 8.

Machine Inst

O,

CcCw

RESCON

Macro Def

Compute
Alignment

LOCATE

Assign Current
LOF Counter
Value to NAME

Literal
Reference

©

Other

Step to
Mend LOF
Entry

-0

Overview of Phase IIB function

Section 2:

©

RESLIT

Add Literal
to Current
Pool

|

©

Assembler Functional Description 17

18

If the logical order file entry repre-
sents a control section entry, the
following processing is performed.

Each control section within the
assembly has its own individual loca-
tion counter, for which two values are
maintained: the current value as it
exists for any given statement, and
the highest value the counter has
reached during the course of proces-
sing the control section. At any
change of control section the current
value of the location counter is saved
(in the section name item in the dic-
tionary). If this value exceeds the
highest value previously saved, the
highest value is also updated and
saved. The current value of the loca-
tion counter for the new section is
retrieved and installed as the working
counter for subsequent statements.

The location of the section name item
for the new section is also inserted
in the current control section
indicator.

For each occurrence of a new con-
trol section other than a blank COM or
DSECT, a 512-byte "page usage"™ table
is reserved in working storage. The
table length provides one bit for each
of 4096 pages allowed for a control
section. Each time the location coun-
ter is incremented, and the increment-
ing instruction is other than a DS or
ORG, a bit is set in the corresponding
page usage table, indicating that the
page represented by bits 8-19 of the
current location counter contains
text. If a statement will cause the
location counter to exceed the limit
of 4096 pages, that statement is made
commentary, and the remaining state-
ments (except the END statement) are
also made commentary. The page table
is initiated to zero at the time it is
reserved, and its location is inserted
in the section name item.

If the current logical order file
entry represents a LTORG statement,
the location counter is first aligned
to a doubleword boundary. If the sta-
tement has a symbol in the name field,
LOCATE will be called to assign the
current location counter to the sym-
bol. Next, POOLIT is called to gener-
ate the literal pool. The literals
are chained in order of occurrence to
a "first 1link"™ which is independent of
the dictionary. POOLIT's function is
to order the literals by length,
assign location counter values to each
literal, and to transfer the chain
(reordered by ascending location) to
the LTORG entry in the logical order
file. If a PSECT is present in the

assembly, POOLIT excludes address con-
stants from the pool, unless an over-
ride switch is set (indicating the
absence of a PSECT) during Phase IIB
initialization to force their
inclusion.

The LTORG statements in a program
are numbered in order of occurrence.
Literals occurring between (or prior
to the first) LTORG statements are
identified as belonging to the LTORG
number which is forthcoming.

If the current logical order file
entry represents an ORG statement,
ORIGIN is called to evaluate the
operand of the ORG statement. Abso-
lute values receive a diagnostic mes-
sage but are then accepted as indicat-
ing a location counter setting rela-
tive to the current control section.
Relocatable values must be simply
relocatable and relative to the cur-
rent control section. A null operand
indicates that the location counter is
to be set to the highest previously
attained location counter value for
the current control section.

If the value of the new origin is
less than the current reading of the
location counter, the current value is
compared against the highest previous-
ly attained value (preserved in the
section name item). If the current
value is higher, it replaces the pre-
vious high value. If the current
value is not higher, it is discarded.
In either case, the new origin is
instated as the current value of the
location counter and placed in the
logical order file entry for ease in
listing in Phase III.

If the current logical order file
entry represents a DC or DS instruc-
tion, a test must first be made to
determine if a constant item was con-
structed for the statement in Phase I.

If the statement was incapable of
resolution in Phase I because of lack
of definitions for terms in the expre-
ssions for length, duplication, scale
or exponent, the constant scan routine
(CSCAN) is called to comstruct a con-
stant item. If an item cannot be con-
structed, the statement is considered
invalid and is treated as commentary.
If a constant item was constructed in
Phase I, Phase IIA, or Phase IIB,
RESCON is called to resolve any condi-
tional alignment. The type of align-
ment required is indicated in the con-
stant item. RESCON aligns the working
bit location counter to the proper
boundary and, if the alignment amount

is nonzero, constructs an alignment
LOF entry. This entry indicates the
number of bits to skip. RESCON also
inserts the alignment entry in the
logical order file preceding the entry
for the current DC or ps statement.
This ensures that Phase III will make
an identical adjustment to the loca-
tion counter. The working byte loca-
tion counter will be set to the trun-
cated value of the bit counter.

If there is a symbol in the name
field, LOCATE is called to assign the
current location counter value to the
name.

A DXD instruction is treated as a
DS instruction with the following
€xceptions: an entry is made for the
DXD on the Q REF chain, and the loca-
tion counter is unchanged.

If the current logical order file
entry represents an EQU statement, the
EQUATE subroutine is used to determine
the legitimacy and the value of the
operands of the statement. EQUATE
will be entered only if the value of
an EQU statement was unobtainable dur-
ing Phases I or IIA. The applicable
type and length attributes of the
value item are entered into the dic-
tionary for absolute, relocatable, and
complex expressions. A diagnostic
will be issued if the name has been
previously defined (duplicate symbol),
if the expression type or length is
invalid, or if the symbol in the
operand has not been previously
defined.

If the current logical order file
entry represents a CNOP statement,
RESCON is called to resolve any condi-
tional alignment. The operand is eva-
luated and, if valid, the location
counter will be aligned to a halfword
boundary. If the alignment amount is
nonzero, an alignment LOF entry is
constructed indicating the number of
bits to skip. The alignment entry is
inserted in the logical order file
preceding the entry for the CNOP sta-
tement. The number of generated NOPRs
required to satisfy the CNOP is then
determined, and the total instruction
length (in bits) of the NOPRs is
inserted in the LOF entry for the
CNOP.

If the current logical order file
entry represents a machine instruc-
tion, a test is made to determine if
the location counter is positioned at
a halfword boundary. If not, a spe-
cial entry jis made to RESCON to com-
pute the amount of alignment required

10.

11.

12.

Section

2:

and to generate an alignment LOF
entry. The alignment entry is
inserted in the logical order file
preceding the entry for the current
machine instruction.

A flag is set in the LOF entry dur-
ing Phase I if there is a literal in
the operand of a statement. If this
flag is on, RESLIT is called to scan
the literal as if it were a normal
DC-statement operand, to prepare a
constant item for it, and to enter the
literal as an item in the main
dictionary.

A test is made to determine if
there is a symbol in the name field.
If there is, LOCATE is called to
assign the current location counter
value to the name.

If the current logical order file
entry represents a CCW statement,
RESCON is called to align the current
location counter to a doubleword boun-
dary. If the alignment amount is non-
Zzero, an alignment LOF entry is con-
Structed indicating the number of bits
to skip. The alignment entry is
inserted in the logical order file
preceding the entry for the CCW
statement.

If the flag bit in the LOF entry is
on, indicating a literal in the
operand, RESLIT is called. The liter-
al will be scanned (by CSCAN) as if it
were a DC-statement operand, a con-
stant item will be prepared for it,
and an item for the literal will be
entered in the main dictionary.

If there is a symbol in the name
field, LOCATE is called to assign the
current location counter value to the
name.

When a logical order file entry repre-
senting a MACRO statement is encoun-
tered, Phase IIB will step through the
LOF entries representing the macro
definition until the MEND LOF entry is
encountered. Since no processing is
required in Phase IIB for a macro
definition, the statements are simply
bypassed.

Other assembly instructions require no
special processing and are therefore
bypassed.

At the end of Phase IIB, the control
routine causes the construction of
logical order file entries which
simulate a CSECT statement (a con-
tinuation of the first CSECT) and a
LTORG statement. GSM entries are also

Assembler Functional Description 19

constructed to indicate the change of
section. The highest value of the
location counter for the CSECT is
reinstated and the literal pooling
routine (POOLIT) is called. All
remaining literals that are not
address constants are pooled at the
end of the first CSECT.

13. Phase IIB now determines whether a
designated PSECT exists. If it does,
logical order file entries are con-
structed to simulate a PSECT and a
LTORG; GSM entries are constructed to
indicate the change of section; the
jocation counter value is set to its
highest for the PSECT; and POOLIT is
called again, this time with an over-
ride switch set that causes the rou-
tine to accept address constants when
they are encountered in the list of
unpooled literals. If no PSECT
exists, the override switch is set at
the beginning of the phase. This
action causes address constants to be
pooled with other literals at each
LTORG statement.

14. At the end of the phase, the chain of
section name items is processed to
compute the page usage for the pro-
gram. Each control section that con-
tains text will have, in the dic-
tionary item, a pointer to its page
usage table. To determine the number
of pages used by each section, it is
necessary to count the bits that have
been turned on in the table. The
total bit count (total pages) is post-
ed in the section name item for use by
Phase III in generating text. A cumu-
lative total of pages for all control
sections is computed so Phase III can
call VMGET for the required number of
pages for the binary text module.

PHASE IIC FUNCTIONAL DESCRIPTION

Phase IIC tabulates the status of PRINT
control, LTORG numbers, and USING registers
in relation to each control section when a
section has been written discontinuously.
It also associates the operands of ENTRY
statements with the names of control sec-
tions in such a way that R-type addressabi-
lity is established.

An overview of Phase IIC function is
shown in Figure 9. The numbered paragraphs
in the following description correspond to
the numbered boxes in the figure.

Construction of the output module
requires Phase III to process each control
section contiguously. Phase IIC is
required to maintain compatibility with
0S/360 definition of PRINT, LTORG, USING,
and DROP statements while processing in
control section order.

20

By Phase IIC only section names,
PRINT, LTORG, USING, DROP, and ENTRY
statements remain in the GSM chain.
Phase IIC searches the GSM chain and
constructs and maintains a working
using table. If an ISD is to be pro-
duced in Phase IV, an ISD list of
using table locations is established.
The PRINT, LTORG, USING, DROP, and
ENTRY links are removed from the GSM
chain as processed.

At each section change, the working
version of the using table is copied
into a permanent location as the cur-
rent table. Current pointers are
updated to address the current control
section. The GSM entry for the sec-
tion name will be followed immediately
by an entry pointing to the current
using table, which will reflect the
status of using registers, PRINT con-
trol, and the current LTORG number at
the point of continuation.

When a LTORG entry is encountered in
the GSM chain, the LTORG number in the
working using table is updated to the
next higher number. The GSM entry for
the LTORG is then removed from the GSM
chain.

If a GSM entry for a PRINT statement
is encountered, the new PRINT status
is recorded in the working version of
the using table. The GSM entry for
the PRINT is then removed from the GSM
chain.

If a GSM entry for an ENTRY statement
is encountered, an entry trailer is
constructed and linked to the previous
entry trailer for the control section.
If a trailer has not been previously
constructed, the current trailer is
linked to the appropriate control sec-
tion dictionary item. The GSM entry
for the ENTRY is then removed from the
GSM chain.

After Phase I1IB, definitions are
available for any symbcl that may
legitimately appear as an ENTRY
operand. The section name within
which the ENTRY occurs is also known,
since the GSM chain includes section
names that Phase IIC records in the
current control section address.

If the ENTRY occurs within a named
section that is not a DSECT, entry-
operand items are constructed in the
main dictionary and chained to the
item for the named section that is
currently in control. This produces
definitions that are capable of R-type
references. The ENTRY statement may
not appear in a DSECT or an unnamed
CSECT. ENTRY statements may appear in
named common control sections.

Figure 9.

GSM Chain

Yes

To Phase ITT

N

Branch

Section Name

Make Copy of
Working Using

[o]
on
W

6. The USING table processor,
called by Phase IIC control when the
current GSM entry indicates the pre-

sence of a USING statement.

USET,

—
Table in Permanent
Location

LTORG
N
14 3 Y
o
Update
LTORG
Number
PRINT
®
Update

Print
Status

RY

Chain Entry

©

to Appropriate
Control Section

USING

USET

Add Entries to
Current Using Table

{
\Z/

DROP

DRSET

—

Remove Entries from
Current Using Table

Construet GSM
_______ | Entry Pointing \
to Copied
Using Table
—
|
-l Remove
I ?"‘*“‘"‘ Link from pF———-r "@
GSM Chain
?
|
—
|
|
|
|
Copy Table to
New Area. Replace GSM

USET

Overview of Phase IIC function

is

updates the status of the working ver-
sion of the using table.

USET first resets a series of indi-
cators which it uses to check for

duplicate register specifications.

It

then calls EVAL to evaluate the first
operand, which is the base value for

the using registers.

Absolute and

relocatable expressions are accept-

able.

consist of a single external or
internal symbol plus or minus any

absolute value.

The relocatable expression may

Indicators are set to

denote whether the table entry is to

be in absolute,
external format.
set accordingly.

relocatable,
The base value is
Each of the remain-

or

ing operands is submitted in turn to

EVAL.
lute,

less than 16,
icate another operand.

The expression must be abso-
and must not dupl-
If legal, the

using table entry for the specified
register is constructed.

USET adds

Section 2:

with Pointer
to Copied Table

>

4096 to the base value for each legal
operand after the first until the list
of operands is completed. The logical
order file entry for the USING state-
ment is completed. Indicators are
inserted showing the type of base
expression and its value.

Record LTORG
and Print Status

The working version of the using
table is copied into a permanent loca-
tion. The GSM entry for the USING is
replaced with a base register table
locator entry which points to the
copied tatle.

The DROP table processor, DRSET, is
called by Phase IIC control when the
current GSM entry indicates the pre-
sence of a DROP statement. DRSET
updates the working version of the
using table.

DRSET first resets a series of
indicators which it uses to check for
duplicate register specifications. It
then calls EVAL to evaluate the expre-
ssion for each of the operands. Each
expression must be absolute, less than

Assembler Functional Description 21

Figure 10.

22

16, and must not duplicate another

operand.

If legal,

the table entry

PHASE III FUNCTIONAL DESCRIPTION

for the specified register is marked
as no longer available as a cover

register.

The working version of the using
table is copied into a permanent loca-
The GSM entry for the DROP is
replaced with a base register table

tion.

locator entry which points to the

copied table.

Source
Language
Listing
Wanted

Phase III controls final processing of
all instructions.

It organizes the program

by control section, produces the necessary
binary text and relocation information for
the object program, and provides listings

of the source and object programs.

An overview of Phase III function is
shown in Figure 10.

The numbered para-

graphs in the following description corres-
pond to the numbered boxes in the figure.

Diagnostic

5

SLLS

Prepare Source
Language Listing

CSDPR

Prepare Control
Section Dictionary

Initialize for
Next Pass Over
GSM Chain

End
of GSM Chain
2

Remove Link
from LOF Entry
and Add to
Diagnostic Chain

Machine Inst.

©

VMGET

Get Working
Storage

]

ENDPR

@@

Process Module
Entry Point

Get Next
LOF Entry

Branch
on
Type

MOPR LIST
Update Location
Process Machine 4 Format Qutput Counter by
Instruction Line Generated Length
CCw
CCWTXT
e —
Process CCW !
DC
G
DCTXT
? Process Constant
|
LTORG o
D) LITXT
Process Literal @
Pool
List Diagnostic
Other Messages
D I
Perform @
Required
Processing Prepare External
for Statement Name List
Control Section
To Phase IV
Locate
Corresponding
GSM Entry

Step to Next
GSM Entry

Overview of Phase III function

Remove Link
from GSM Chain

Phase III begins by preparing a source
program listing, if one is desired.
The source listing processor (SLLS)
prepares a listing of the input source
lines in their original order and for-
mat, with the sequence number assigned
to the statement by the line data set
facilities. Either the VISAM PUT
macro is used to place the edited
lines in the list data set, or the
GTWRC macro is used to put the listing
on SYSOUT, depending on user request
and mode. Using the LISTDS operand,
the user, in either conversational or
nonconversational mode, may direct
requested listings to SYSOUT orxr have
them entered in a list data set.

The page usage estimated for the out-
put text is calculated, and VMGET is
called to procure ocutput working
storage. VMGET is called again to
procure working storage for the pro-
gram module dictionary and the extern-
al name list.

The module entry point processor
(ENDPR) is called to construct the
module heading and to complete the
heading, as far as possible, at this
time. ENDPR calls the expression eva-
Juator to evaluate the operand of the
END statement and completes the head-
ing according to the type of operand.
The length of the module heading is
computed, and the location of the
first control section dictionary is
established.

Phase III uses the GSM chain to put
the program into order by control sec-
tion. Within each section, the logic-
al order file controls the order of
processing. Each statement repre-
sented in the logical order file is
processed by an appropriate open or
closed subroutine.

If a logical order file entry repre-
senting a diagnostic is encountered,
the entry is delinked from the LOF and
added to the diagnostic chain for ease
of listing at the end of the phase.
The error flag is set with the appro-
priate code so that the listing rou-
tine (LIST) can output the code with
the statement to which the diagnostic
refers.

If a logical order file entry repre-
senting a machine instruction state-
ment is encountered, the machine-
operation processor (MOPR) is called
to evaluate the operand field of the
statement and to create corresponding
binary output in the text portion of
the output program module. The
address in the output text which the

Section 2:

instruction is to occupy is calculated
prior to entry. The instruction
length is determined from the LOF, and
the bytes to be occupied by the
assembled text are set to zero. The
operation code is transferred from the
LOF entry to the text. Processing
proceeds according to the instruction
type: RR, RR with extended M1 field,
RR with only one register, RR with
immediate value, RX, RX with extended
value, RS with explicit R3 field, RS
without R3 field, SI with immediate
value, SI without immediate value, SS
with two length fields, and SS with
one length field. The syntax of the
operand field for the instruction type
is evaluated and checked for validity.
As each component field of the
instruction is evaluated, the corres-
ponding binary output is placed in the
text. When the text has been com-
pleted the instruction is checked
against the machine operations
requirement table to diagnose align-
ment errors and improper register
usage.

Relocatable operands are submitted
to the USEVAL subroutine, which
reduces the relocatable symbol to a
base register and displacement value.
The location counter value of relocat-
able operands, including literals, is
obtained by the GETVAL subroutine.
Exit is made to Phase III control.

The object program listing routine
(LIST) is called to format the output
line. LIST uses the current logical
order file entry and is supplied the
location and length of any binary text
generated for the statement repre-
sented by the LOF entry. With these
sources of information LIST can pre-
pare a suitably formatted line for the
object program listing. If PRINT con-
trol is set to OFF, LIST performs no
processing. If ON, LIST prints infor-
mation relative to the binary text on
the left side of the listing and
information relative to the source
statement on the right. LIST uses the
PUT macro in VISAM to place each line
in a list data set, or the GTWRC macro
if the listing goes immediately to
SYSOUT. The line is 132 characters
and is preceded by an ASA FORTRAN
standard print control character:
blank for single space, 0 for double
space, and 1 for page eject.

The location counter for the cur-
rent control section is incremented by
the generated length, if any, of the
current statement. The address in the
output text that the next instruction
is to occupy is computed accordingly.

Assembler Functional Description 23

24

If a logical ordexr file entry repre-
senting a CCW instruction is encoun-
tered, the CCW instruction processor
(CCWTXT) is called to evaluate the
operand field of the statement and to
create corresponding binary output in
the text portion of the output program
module. The address in the output
text that the CCW is to occupy is cal-
culated prior to entry. Adjustment
will have been made to a doubleword
boundary. The eight bytes of text are
set to zero. The syntax of the four
operands is evaluated and checked for
validity. As each component field of
the instruction is evaluated, the
corresponding binary output is placed
in the text. The PUTVAL subroutine is
called for relocatable data address
operands, including literals, to cre-
ate the necessary relocation dic-
tionary information required to modify
the text of a relocatable field. Exit
is made to Phase III1 control.

The LIST routine is next called to
format the output line. For a
description of its function, refer to
item 7.

If a logical order file entry repre-
senting a DC statement is encountered,
the Phase III constant processor
(DCTXT) is called to place the binary
text for the constant into the output
module. The text and relocation
values for address constants not pre-
viously obtained are resolved during
this processing. DCTXT examines the
constant item associated with the LOF
entry for the DC and establishes a
duplication factor for the text. If
the constant is an address constant,
the ADCON subroutine is called to pro-
duce text and relocation information
for the constant. If the constant is
not an address constant, its value is
retrieved from the constant item and
moved to the text location. For bit-
length constants the text location is
bit-oriented.

Movement of data into the text is
repeated until the duplication factor
is reduced to zero. The LIST routine
is called to generate printed output
on each duplication when the DATA
print option is specified, except for
bit-length fields. For bit-length
fields, the next LOF entry is tested
when all duplications of the current
constant are complete. If the next
LOF entry indicates a multiple-operand
bit-length constant, the bit-oriented
text location is maintained at its
current updated value so that the next
constant may be packed at the next
adjacent bit. The entire bit-length

10.

11.

constant is then printed. Multiple
operands for non-bit-length constants
are processed by successive entries to
DCTXT.

After return is made to Phase III
control, the location counter for the
current control section in incremented
by the generated length of the con-
stant. The address in the output text
that the next instruction is to occupy
is computed accordingly.

If a logical order file entry repre-
senting a LTORG statement is encoun-
tered, the literal pooling processor
(LITXT) is called to place the binary
text for the literals in the given
pool into the output module. The
values of address constants not pre-
viously obtained are resolved during
this processing. The logical order
file entry points to the head of a
chain connecting all literals pooled
under the given LTORG. For each lit-
eral in the pool, LITXT creates an
artificial source line for the benefit
of the listing. LITXT also constructs
an artificial LOF entry for the liter-
al, simulating an entry for a normal
DC statement. Having made the literal
appear as if it were a normal con-
stant, LITXT calls the DCTXT routine
to process the constant. DCTXT will,
in turn, call LIST to format the out-
put line. Exit is made to Phase III
control where the page usage for the
pool is determined and, if necessary,
entries are made in the virtual
storage page table. The address in
the output text that the next instruc-
tion is to occupy is computed.

Various assembler instructions require
little processing in Phase III. The
processing required for these instruc-
tions is described below.

MACRO/MEND: A flag is set when a log-
ical order file entry representing a
MACRO instruction is encountered.

This flag causes all statements
(except diagnostics) that occur until
the MEND LOF is encountered to be
recognized as model statements in a
macro definition and, as such, to
require listing only. The LIST rou-
tine is called to list each statement.

USING/DROP: The occurrence of a log-
ical order file entry representing a
USING or DROP statement indicates that
a new using table is required for
references by USEVAL. The address of
this table is retrieved, the GSM entry
for the USING or DROP is delinked, and
the LIST routine is called to list the
statement.

Alignment: If an alignment LOF entry
is encountered, a test is made to
determine if text is required. If so,
the text is set to zero, page usage is
determined, and the LIST routine is
called to format the line. 1In either
case, the location counter will be
incremented by the generated length.

ORG: If a LOF entry representing an
ORG is encountered, the object program
location counter is set to the value
of the ORG, and the LIST routine is
called to format the line.

bS: If a LOF entry representing a DS
is encountered, the increment to the
location counter is retrieved from the
constant item, and the LIST routine
called to format the line. The loca-
tion counter will be incremented by
the length of the instruction.

CXD: If a LOF entry representing a
CXD is encountered, a CXD reference
item and temporary RLD item are built.
The CXD is chained onto the external
reference chain, and the CXD-REF flag
is set on. A call is then made to the
LIST routine to format the line.

DXD: The occurence of a logical order
file representing a DXD instruction
requires that a O reference item be
built. The DXD instruction is then
treated as a DC statement.

CNOP: If a LOF entry representing a
CNOP is encountered, and text is
required for the CNOP, page usage will
be determined, and the text location
updated. The number of NOPR instruc-
tions required are generated and
placed in the output text. The LIST
routine is called to format the line;
the location counter is incremented by
the generated length, and page usage
is determined. If text is not
required for the CNOP, the LIST rou-
tine is called to format the line.

PRINT: The occurrence of a PRINT LOF
entry requires only that the indicator
for print status be updated.

SPACE: The occurrence of a SPACE LOF
entry requires that the operand of the
statement be evaluated, and the wvalue
plus one set as a parameter for the
LIST routine. If the operand is null,
the value is set to 2.

TITLE: The occurrence of a TITLE LOF
entry requires that a parameter be set
to cause a page to be ejected, and the
length and location of the title set
for the LIST routine.

Section 2@

12.

13.

14.

EJECT: The occurrence of an EJECT LOF
entry requires only that a parameter
be set to cause a page to be ejected.

Other: Other assembler instructions
require listing only.

When a logical order file entry repre-
senting a control section is encoun-
tered, a test is made to determine if
the section is new or is a continua-
tion of the section being processed.
If it is a new section, the GSM chain
will be stepped through to attempt to
locate a GSM entry for the current
control section. If an entry is not
found, all the processing has been
performed for the section, and it is
time to build the control section dic-
tionary. If an entry is found, the
link is removed from the GSM chain,
the logical order file entry pointer
is positioned to the corresponding LOF
entry, the statement is listed, and
processing of the LOF will resume at
the entry following the entry for the
continuation of the current control
section.

When the end of the logical order file
is reached, or the end of the GSM
chain when not at the end of the LOF,
the control section dictionary proces-
sor (CSDPR) is called to complete the
processing of a control section dic-
tionary before Phase III control
begins processing a new section.

CSDPR is responsible for retrieving
all relocation modifiers and reference
items in temporary storage and for
producing a final output CSD from
them. CSDPR initially constructs a
section heading in the PMD. The total
number of bytes in the text and the
relative page number where the text
begins are placed in the section head-
ing, the section name is located in
the dictionary, and CSDPR begins fol-
lowing the chain of ENTRY names that
is attached to the section-name item.
Three passes are made over the ENTRY
chain: (1) the simply relocatable
definitions receive definition items
constructed in the control module; (2)
absolute definitions receive defini-
tion items; and (3) complex defini-
tions receive definition items. Simi-
lar processing is performed for the
RLD modifiers for the text. Finally,
a table is constructed in the module
with one entry for each page of virtu-
al memory represented by the text.

If any links remain in the GSM chain,
the first control section entry that
remains in the chain is located, the
logical order file pointer is posi-
ticned to the corresponding LOF entry,

Assembler Functional Description 25

15.

16.

and processing of the logical order
file is resumed. If the GSM chain is
exhausted, all processing for control
sections has been completed.

A diagnostic chain has been con-
structed by transferring diagunostic
logical order file entries from the
LOF to the diagnostic chain. The LIST
routine is now called to list a mes-
sage for each entry in the diagnostic
chain. Summary messages indicating
the number of messages and the highest
severity code are then produced.

A list of external names is prepared
by following the chain of section-name
items. This list of names is prepared
so that LPC can "STOW" them when dis-
posing of the unit.

PHASE IV FUNCTIONAL DESCRIPTION

Phase IV calls the post processors

required to produce the output options

selected by the programmer.

The post pro-

cessors produce the symbol table listing,

cross-reference listing,
and ISD 1listing.

PMD listing, ISD,
Certain combinations of

these services are available to the pro-

grammer .

In Phase IV, the option flag for

each processor is checked, and the post
processor is called if its output is
desired.

An overview of Phase IV function is
shown in Figure 11.

The numbered para-

graphs in the following description corres-
pond to the numbered boxes in the figure.

1.

26

If the programmer has selected the
option for a cross-reference listing,
the cross-reference listing processor
(XREF) is called to sort the cross-
reference items produced during Phase
IIT and to produce an orderly listing
of them. In Phase III, cross-reference
items were stacked contigquously in
working segment 1. A pass is made
over the items to produce the listing.
The items are sorted alphabetically by
key of dictionary item, with defini-
tions preceding references, and
references sorted by ascending value
of location counter. The address list
produced by the sort controls the
order of the printed items. The for-
matted lines are stacked behind the
listing in the listing module.

If the programmer has selected the
option for a symbol table listing, the
symbol table editor (STED) is called
by Phase IV control. STED prepares a
sorted listing of all symbols con-
tained in the main dictionary, togeth-
er with their type, length, and value

Table Edit

Phase IV

Enter

O,

XREF

Prepare Cross -
Reference Listing

Wanted
?

STED

Prepare Symbol
Table Listing

ISD Wanted

Is

ISDPR

Prepare 1SD

PMD Listing
Wanted

1SD Listing
Wanted

®

Is PMDLS

List PMD
?

®

Is Has

ISDSA

Yes ISD Been
Prepared
?

List ISD

?

No
Exit
To Assembler
Master Control
Figure 11. Overview of Phase IV function
attributes. STED follows each link

indicated by the main hashing table
and stores a sorting key which con-
sists of the address of each item in
the main dictionary, except transitive
items. STED then sorts the keys into
ascending alphameric sequence based on
the character value of the symbols in
the dictionary. The resulting list is
edited for printing, with two columns
of symbols appearing on each page.

If the programmer has selected the
option for an ISD, the ISD processor
(ISDPR) is called by Phase 1V control
to reduce the contents of the per-
manent dictionary to those items

required by the program control system
(PCS), and to format those items con-

veniently for PCS in a special intern-
al symbol dictionary (ISD).

If the programmer has selected the
option for a PMD listing, the program
module dictionary listing processor
(PMDLS) is called by Phase IV control.
Information for the listing header
lines is secured from the PMD header.
The following details, when present,
are listed for each control section
within the module:

e Section name
e Type of section
e Version identification

e Attributes

Section 2:

¢ Length of the control section
e Text length

* Relocatable, absolute, and complex
definitions for the section

s References
e DXD and CXD references
e Modifiers for complex definitions

e Modifiers for text (internal and
external references, Q-CONs, and
CXDs)

If the programmer has selected the
option for an ISD listing, and has
also requested an ISD, the ISD list
processor (ISDSA) is called by Phase
IV control to display the contents of
the internal symbol dictionary.

Assembler Functional Description 27

SECTION 3:

ASSEMBLER FUNCTION BY INSTRUCTION TYPE

INTRODUCTION

The next three figures show the function
of the assembler by type of instruction.
The level of nesting is in order from top
to bottom and, in general, the sequence of
processing is from left to right.

MACHINE INSTRUCTIONS

Figure 12 shows the assembler function
for machine instructions.

During Phase I, the REED routine obtains
the source statement and a logical order
file entry is constructed. If the name
field contains a valid symbol, an entry is
made in the main dictionary. If the
assembly is in conversational mode, the
operand field is checked for validity.

Machine instructions generated by macros
are processed during Phase IIA, as
described below.

During Phase IIB, machine instructions
are recognized and the location counter is
stepped. If necessary, the location count-
er value is adjusted to a halfword boun-
dary. If a symbol is present in the name
field, it is assigned the value of the cur-
rent location counter.

Machine instructions are not processed
during Phase IIC.

During Phase III, each operand is ana-
lyzed for syntactical correctness and
checked for validity. The appropriate
number of bytes of binary text is generated
(by MOPR) and placed in the output text
module. The statement is listed on the
object program listing.

Machine instructions require no further
processing in Phase IV.

MACRO_ INSTRUCTIONS

The assembler function for macro
instructions is shown in Figure 13.

During Phase I, the REED routine obtains
the macro reference statement. A logical
order file entry and a global-section-macro
(GSM) entry are constructed for the
statement.

Phase IIA processes the GSM chain and

calls the statement analyzer to expand the
macro. The routines enclosed by dotted

28

lines in Figures 12 and 14 are executed for
each generated statement. Macro statement
generation is accomplished by substituting
the character-string values of the current
arguments for the corresponding parameters
in the definition. The statements
generated by macro instructions are created
and placed in the assembler virtual
storage. 1If the macro reference is to a
library macro, the macro definition must be
retrieved from the library, and lines
linked together in storage before macro
expansion can begin. In Phase IIA, the
Phase IIA control module replaces the LPC
in determining the order and origin of the
statements.

In Phase IIB, the only processing
required for a macro reference is to assign
the current location counter value to the
symbol in the name field (if one exists).
Generated statements are processed as
wmachine or assembler source statements dur-
ing the remainder of the assembler.

In Phase ITI, the only processing
required is to list the statement on the
object program listing.

Macro instructions require no further
processing in Phase 1V.

ASSEMBLER INSTRUCTIONS

The assembler function for assembler
instructions is shown in Figure 14.

During Phase I, the REED routine obtains
the source statement, and a logical order
file entry is constructed. The entire sta-
tement is checked for syntactical correct-
ness. If the instruction is one of the
following, a global-section-macro (GSM)
entry is made: control section statement
(CSECT, PSECT, DSECT, COM, START), GBLx%,
SETx, USING, DROP, ENTRY, PRINT, or LTORG.

During Phase IIA, all GBL declarations,
global SET instructions, and section name
changes are reprocessed in order that
macro-generated statements have proper
values for global variables and the
assembler variable symbol &SYSECT.

During Phase IIB, only certain types of
assembler instructions are processed.
EQUATE is called for an EQU; ORIGIN is
called for an ORG; POOLIT is called for a
LTORG (after first assigning the current
location counter value to the name if the
line is named); RESCON is called for a CCW
followed by RESLIT, if the data address

| 104DNjOA
| uoissaidxy

IVAI

VI 8spyd Ut uotsundxa ouobw Bupinp sjuswalogs paynsausb oy paspads. Buissanoly

1
uoljolad) oju|
3inksNg
d408Nns

ubag punsadey sjolaji unag AP0y UoHBIRL()
| oINS 404 UOINEHSGNG Ay1puapy
| EUVELITY puntad() updg Buliyg pup 423|100
“ dIwW s NVISS d0O139
| i B— 4
oN _M |
SELR) JUDWOJDIG
awon Ul EEIREIS
joquAg aulyaq Builg REINET-TS)
WAS43a dOLVD SEE
i T
e - J— \.# _ —
- | |
| _ !
(Buissasoig oN) RZAOUY e ilx_ M
U= FVEINENT-IIN W
v 1T @seyy NVLS - - S s e
_ﬁ -
|
jolueD
1 @spyg

satsibey A ! upisd
Buispy 9|qpjpoo|ay P o
: 940N|OA]
aindwory UL VAT
TWA3SN WALID "
' ¥
S i:iiq e
supy inding aup 105532014
ol e indingy spwioy uoppiad(y
MILYD 151 BUIYIDW
4dOW
__»aﬁlri[!!..
(I 8304q)
jonuony unog
I @sbyq jupysuon
NV25D
t
“
(Buissenoig op) (Bujssanaiyg op) ac,EuZ o} JuswuByy 10858000y
josquod) joluoT E*cm:ou anjosay uoynjosay
h uopLOoT UBly IIEA
I 9spyd DI #soyd
I eses 11v201 NOJ53Y 1Sy
I
josuon
4 1II 93044
[}
1
L
jo4ueD)
JETHA
19]quisssy

e

s,

tructions

ins

Assembler function for machine

Figure 12.

29

Assembler Function by Instruction Type

3

Section

Assembler
Master
Control
Phase [Phase II B ?:huse]r}C Phase 1 gxosre IN
Control Control = Lontro ™ Control > ~ontro .
{No Processing) {No Processing)
=] | |
. LOCATE
STAN Phase T A Assign Location LIST
Statement Control Counter to Format Output
3 Analyzer Neme Line
Y v
S cATOP MACREF STAN Expand GATEW
ef Mext e oo Statement +»| Macro Write Output
Source Substitution Reference Anal . Line
Statement Control Processor nalyzer
T
1
GETOP SSCAN MACREF
Collect and String Process Macro
Identify Name Substitution Reference
of Macro Scan
l 1
SUBOP PARAMAC
Substitute Construct
Into Operation Macro Level
Field Dictionary
f
' '
CEVMLA CEVMLB STAN
Find Symbolic Retrieve Set Up Encoded
Comporent Successive Form of Macro
Parcel Parcel Lines Definition
*See Figures 12 and 14 for detail Statements
of macro expansion for machine

and assembler instruction.

Figure 13.

contains a literal, and LOCATE if a symbol
exists in the name field. If a constant is
being processed (DC or DS), CSCAN will be
called to build a constant item if an item
was not made in Phase I; RESCON will be
called to align the constant and LOCATE
will be called to assign the current loca-
tion counter value to a symbol in the name
field. Other assembler instructions are
bypassed in Phase IIB.

Only the following assembler instruc-
tions are processed in Phase IIC: section
name (CSECT, DSECT, PSECT, COM, START),
LTORG, PRINT, ENTRY, USING, or DROP. USET
will be called for a USING statement and
DRSET for a DROP statement; each of these
statements, as well as a section name sta-
tement, result in a new using table being
constructed.

The module entry point processor is
called first in Phase III to process the
END statement. The GSM chain controls the
order of processing in Phase III. Because

30

Assembler function for macro instructions

the output binary text and object listing
must be in order by control section, a sec-
tion name GSM entry will be either accepted
as a continuation of the current control

section and the processing of the logical
order file resumed at the section continua-
tion, or it will be bypassed if it is not
the current section and will be processed
in a subsequent pass over the GSM chain.

Other types of LOF entries that receive
special processing in Phase III Control are
MACRO, MEND, EQU, USING, DROP, ORG, Ds,
CXD, DXD, CNOP, PRINT, SPACE, TITLE, and
EJECT. IOF entries that result in special
routines being called are: CCW, for which
CCWTXT is is called to generate a line for
each literal in the pool and which, in
turn, calls DCTXT to construct the binary
text for each literal. LOF entries for all
statements are processed by the LIST rou-
tine that will output the object listing.

Assembler instructions regquire no furth-
er processing in Phase IV.

108582014
uoljnjosay
o124y
1153y
(m22) pasn aq AP UD1yM SBUNOS JO UOHDUSN[[! 10} /| 21nBLy 3¢
EwE:m:{ I
O\LOM@M M
NODS3Y ; VT as0yq Ut
[} ! uotsupdxs olopw Bulinp sjusuialnys
| pajpiauab 1oy pajpadal Buissadoig
i [N . AR : A
! | |
AUy sndin h ELLIN ! ploty
4 mm_._% : O} JBUNOT) ! voppiedey oy ||
MILYD uoyoa07 UBssY w r anidsqng |
I 31vD01 i | 40O4ns |
| 5 w m L ﬁ
i | . | I |
| | | y | |
JUDISUOD AUl (aNg) (dOND © “5a ’ up2g apedy ucipidQ _.
SSRIPPY nding Mg Agug ‘1Q) tuswuby)y _ uoclNisgng
mm@UO.u& FCFCOm _U_DTCE wmQUOLn_ .m>_0mmum A,, @—:‘:W UCC %UWZOU m
NODAY isn ddaNd NODSTY NV DSS 4030 |
i R, WIL i
A t , t , u ' |
| ! i
BN|DA JUDISUOT) - | jood (9¥O) 494uno) : (s 1© 2q) | LMOTFONISYY josuoD JUBWaYRIG w
EICLILRITEN JupisLas 4080 D194) Uo1§0T0 , 2pOaN $1 Wa _ 19| quess uolN 1SN 92IN0¢)
| 59901 50904 | 1 ! 1 Papasy i way 19 v HAjsgng S !
5590014 201d ? id ajpiaua) uo1}1s04 jupjsuosy aipdaigl | 10} BULINGCY Buig XA $29) '
WALN X120 13540 TleteY NID IO NvDsD| || Ienpinipul dOLVD aay | |
i 1 4 , | |
| { " 7 ,W ! o D — - o - T —
] q .
1 | |(odoLn swon | | (o) wenox | | m
|00g |Pia4I] Buisn i 04 133Uney onjpA ubissy . 19zA|pUY W
MDD 5595044 mmouo.‘i mnmuﬂ.u.,m i UOHD2CT pup uosssaudx3 | | | jodquoD) Juawayoyg
LXLMDD) uBssy a4pN|PA] L v II @spyd ”
LXIN 13sn Lo
X | s ‘, 31¥207 awvnod | ||| VLS - I
L [) b [} [}
! R | » S .l? .
[e | | —_ I
L _ _ V 1
(Buisseooig op)
|o1u0Y jouoy josuod jo4uoD joi3uo)
A 9spyg IIT @swud DI @soid S 41T @spYyd I @soyd
_ |
| JOHUOD Ll ——
? - . JETLTI
19)quassy

ions

truct

ins

Assembler function for assembler

Figure 14.

Assembler Function by Instruction Type 31

3

Section

SECTION 4: ASSEMBLER MASTER CONTROL

INTRODUCTION

For purposes of program maintenance, the
assembler master control provides a centr-
ally located point of interface between the

language processor control (LPC) and the

assembler.
the assembler from the LPC:
continuation, early-end.

There are three entry points to
initiation,

Figure 15 shows the control flow from

phase to phase.

The arrows of Figure 15

Language Processor Control {LPC)

A [

¥ 4

! Assembler Control Medule
’ }

are one-directional and show the true flow

of control in the assembler.
three subroutines:

® Phases I and IIA, executed upon
assembler initiation entry.

As illus-
trated, the assembler may be considered

® Phases IIB, IIC, III, and IV, executed

upon assembler continuation entry.

s Early-end processing performed entirely

in the assembler control module.

Phase calling conditions are specified in

Tables 1 and 2 followed by the detailed

description of the assembler control.

figure 15.

i T :
lf it ; L Cc;lw“ﬂuotion
nitiation Early End e
{CEVPA'A) (CEVPAZ) !"I:E\’PAB?
1
1
A
Phase I Phase IT A Phase I B Phase IV
Control Control Control Control
Phase I C
Control
Phase TII B _7AJ
Control o

LPC calls and assembler phase
control flow

Table 1. LPC call to AC

T 1
|Routine: Language Processor Control |
i —_ - L]
[} T T T 1
| Routine | Purpose | Called Routines | Calling Conditions |
L } 4 3 4
] T 1 ¥ |
Language	[Provides communication be-	AC -- CEVAC {Always called for:	
Processor	tween terminal and		Phase I initialization
Control	Assembler.		Phase IIB continuation
(LPC)			Abnormal assembler
{		termination	
L L i i (]
Table 2. Assembler control decision table {(part 1 of 2)

r - 1
|Routine: Assembler Control Level: 0 |
L 5
] T T T 1
| Routine | Purpose | Called Routines | Calling Conditions

I 4 i 3 4
T L i] 1
|AC (CEVAC) |Provides a centrally located|PHASE I -- CEVPA {Assembler initialization. |
| linterface with the language b { |
| | processor control. |PHASE IIB -- |Assembler continuation. |
| | | CEVPC | |
| I 5 + 4
| | | VMFREE -- CEVFM |At normal end, to free unused |
| { { {virtual storage. |
| | k t 4
		VMCLEAN -- CEVCU	Early end: to clear up stor-
			age obtained from GETMAIN.
			Normal end: to reset VMTABLE.
L 1 L - i]

32

Table 2. Assembler control decision table (part 2 of 2)

r——-

{control section, produces |
|text and relocatable infor-
|mation, and provides

|
|1istings. |
l §
i

}
PHASE IV |[Calls the post processor
(CEVPF) {modules to produce the { (transfer of
|output options selected by | control)
]
i

AC -- CEVAC

[the user.
L

1
|Routine: Level: 1 {
=’ T T T ‘ll
PHASE I	Reads and performs initial	PHASE IIA --—	Completion of Phase I
{processing of source program	CEVPB (transfer	processing.	
		of control) i	
k + + 1 {			
PHASE IIA	Expands macro instructions	AC -- CEVAC {Completion of macro	
(CEVPB) {and obtains library macro	(transfer of	expansions.	
jdefinitions. {contrel)	i		
= + + 1 4			
PHASE IIB	Aligns all statements to the	PHASE IIC --	Phase IIB completion.
(CEVPC)	required boundary, computes	CEVPD (transfer	
	page usage for each control	of control)	
	section, resolves literal	{	
	references, pools and	i i	
i	assigns location counter I		
{	values to literals and {		
	resolves symbol definitioms.		i
5 1 + + 4			
PHASE IIC	Tabulates the status of	PHASE III --	Phase IIC completion.
(CEVPD)	PRINT control, LTORG	CEVPE (transfer	{
	numbers, and USING registers] of control)		
	in relation to each control		
	section.		
F + + 4 1			
PHASE III {Controls the final pro-	{PHASE IV -~ {Phase III completion.		

(CEVPE) |cessing of all instructions;| CEVPF (transfer {
|organizes the program by | of control) i
|

i

|

|

3|

i

|

|

|

i]

|
|
|
|
|
|
+
|completion of an assembly.

|
i
|

AC -- Assembler Control (CEVAC) 2

This routine provides the interfaces
necessary to implement the initiation, con-
tinuation, and early-end entries to the
assembler. (See Chart AA.) 3

Entry Points: CEVPAA, CEVPAB, CEVPAZ
calling Sequence: A description of the

calling sequence for each entry point
follows.

Initiation: The initial entry is a CALL
from LPC with register 1 pointing to a
parameter list of the following format:

Word Content
1 Address of a character string

containing the module name; the
assembler uses only those chara-
cters preceding the first period
in the string, or the first
eight characters, whichever is
shorter.

Address of a one-byte indicator,
which is zero for batch mode,
nonzero for conversational mode.

Address of an eight-byte table
of options; each byte contains
values of 'Y' if the option is
to be selected, or 'N' if it is
not. The options represented by
the table are as follows:

Byte Content

1 Produce 1ISD

2 Produce source listing

3 Produce object listing

4 Produce cross-reference
listing

5 Produce edit symbol

table listing

6 Produce PMD listing

Section 4: Assembler Master Control 33

10

i1

12

13-22

Continuation:

7 Produce ISD listing

8 Listings to a list
data set
(rather than SYSOUT)

Address of the DCB for the list
data set, if specified.

Address of the number of user
macro libraries. The number
should be six or less; if great-
er than six, only the first six
will be used by the macro ser-
vice routines.

Not used.

Address of the DCB for the
source component of the system
macro library.

Address of the DCB for the index
component of the system macro
library.

Address of one-byte indicator.
If zero, word 10 represents a
reading from the system time
facility, which is to be used as
a version identification for the
module; if nonzero, word 10 is a
user-supplied character string.

Address of an eight-byte version
identification string containing
a system time reading or a user-
supplied character string, as
indicated by word 9.

Address of the DCB for the
source component of the first
user macro library.

Address of the DCB for the index
component of the first user
macro library.

Addresses of the DCBs for the
source and index components of
the second and following user
macro libraries. The number of
address constant pairs in words
11-22 must equal the count to
which word 5 points. If there
are no user libraries, words
11-22 will not be used.

Note: The user libraries are
searched prior to the system
library with the heirarchy of
search proceeding backward
through the list from the nth to
the first library.

The continuation entry is

a CALL from LPC with register 1 pointing

to a parameter list of the following

format:
Word Content
1 Address of a one-byte indicator,

8 bytes

Nt

set by the assembler to nonzero
if records have been PUT into
the listing data set and zero if
no records have been PUT into
the listing data set.

Address of a one-word field set
by the assembler at exit to the
length of the PMD in bytes,
expressed as a binary integer.

Address of a one-word field set
by the assembler at exit to the
starting virtual storage address
of the PMD.

Address of a one-word field set
by the assembler at exit to the
length of the assembled program
text, in bytes (to the nearest
page multiple), expressed as a
binary integer.

Address of a one-word field set
by the assembler at exit to the
starting virtual storage address
of the assembled program text.

Address of a one-word fieid set
by the assembler at exit to the
length of the ISD in bytes,
expressed as a binary integer.

Address of a one-word field set
by the assembler at exit to the
starting virtual storage address
of the ISD.

Address of a one-word field set
by the assembler at exit to the
starting virtual storage address
of a list of external names
(entry points) defined by the
assembled module. The list has
the following format:

4 bytes 8 bytes 8 bytes

—N—

module
name

n } entfry

| entry name n
2 name 1

n - The number of eniry names (excluding module name)

Early-end:

The early-end entry is a

CALL from LPC with register 1 pointing
to the address of a one-byte indicator,
as described under "Continuation," word

1.

Routines Called: None.

e Macro Instructions Issued

OPEN (VISAM)
CLOSE (VISAM)
SAVE

RETURN

Exits:
¢ PHASE I (CEVPA) - Initiation
e PHASE IIB (CEVPC) - Continuation

¢ Return to LPC - Early-end or completion
of assembly.

OPERATION: The operations performed vary
for each entry point.

Initiation: Calling registers are saved,
and the assembler's permanent registers are
loaded. A test is made whether requested
listings go back to the user on SYSOUT or
into a list data set. If a listing data
set is to be created, a VISAM index key is
initialized and the data set is opened;
otherwise, a SYSOUT switch is set and the
VISAM data set initiation is bypassed.
Ccontrol is then transferred to Phase I.
Control returns at the end of Phase II1A,

calling registers are restored, and an exit
is made.

Continuation: Calling registers are saved,
and the assembler's permanent registers are
restored. Control transfers to Phase IIB
control, and the remaining phases of the
assembler are executed. Control returns at
the end of Phase IV. All output parameters
required by LPC are filled in, and a return
code is calculated based on the diagnostic
severity code. Unused pages acquired for
the ISD and PMD are released with FREEMAIN;
all working storage is freed; and the list-
ing and macro library data sets, if any
exist, are closed. Unless restart proce-
dures are in effect, calling registers are
restored and control returns to LPC. The
early-end entry is made and portions of the
continuation routine are used for restart
in response to an altered line. When this
is the case, control returns once again to
Phase I, as if initiation had been invoked.

Early-end: Calling registers are saved
and the assembler's permanent registers
are restored. All storage acquired for
the ISD and PMD is freed. A return code
for early-end is set, and control passes
to that portion of the continuation rou-
tine where the remainder of working
storage is freed. Control returns to
LPC with the early-end code.

Section 4: Assembler Master Control 35

SECTION 5: PHASE I

INTRODUCTION

Phase I functions are performed by a
collection of specialized routines to pro-
cess each source language statement in
order, and to produce the main dictionary,
the macro-name dictionary, the global-
section-macro chain, and a partially
encoded version of the program (logical
order file), from which Phase III produces
the output program module.

As shown in Figure 16, the statement
analyzer governs the main flow of control.
It is employed in Phase I to process the
original source statements and again in
Phase IIA to process the source statements
generated by the expansion of macro
instructions. Thus, the main body of Phase
I code may be reexecuted during Phase IIA.

Phase I communicates with external rou-
tines in four instances:

®* When REED (obtain next source state-
ment) requests the next line from the
language processor control GETLINE
subroutine.

® When a macro instruction for which
there is no user macro definition is
encountered in source statements (see
GETOP) .

® When COPY statements are encountered.

® When conversational diagnostic messages
are produced.

The recursive call made by CSCAN upon
EVAL to process DC and DS statements should
be noted. Initially, DC/DS calls CSCAN,
which calls EVAL, which calils CSCAN, etc.
In Figure 16, the arrow from EVAL to CSCAN
Serves a double function:

1. It shows the recursive calls to and
from CSCAN and EVAL in processing DC
and DS statements.

2. It shows the nonrecursive call by EVAL
on CSCAN when processing machine
instructions or an assembler instruc-
tion other than DC or Ds.

Although not shown in ¥Figure 16, all .
processors marked with an asterisk (%)
should show arrow communication with the
diagnostic message processor (DIAG).

Table 3 specifies the conditions under
which the Phase I routines are called.

36

ROUTINES

PHASE I -- Phase I Control (CEVPA)

This routine accepts the operating para-
meters from the language processor control
(LPC), reads and performs the initial pro-
cessing of the source program, and trans-
fers control to PHASE IIA. (See Chart AB.)

Entry Point: CEVPAX
Calling Sequence: L R15,ACEVPA
BR RI15

Input Parameters: R1 - location of input
parameter pointer list

Routines Called: DLPM, STAN, VMGET, VMFREE

Exit: To PHASE IIA (CEVPB)
OPERATION: The pointer to the list of

pointers to the input parameters is con-
tained in register R1. The input parame-
ters are listed in the description of the
assembler control module (AC).

Upon receiving control, VMGET is called
to acquire two areas of virtual storage for
Phase I's own working storage requirements
and one area for the source statements.
These areas are assigned to each user's
virtual storage. Initial and default
values and beginning addresses for variable
Storage are inserted into the static por-
tion of working storage. Static working
storage is also modified as a result of the
operating parameters transmitted by the
language processor control. The date and
time are obtained from the REDTIM macro,
and DLPM is called to build dictionary
items for ESYSDATE and §SYSTIME.

Having established the source program
data set as the current input source, con-
trol is transferred to STAN for the program
to be processed. When the end of the pro-
gram has been reached, control is returned
to Phase I, which, in turn, transfers con-
trol to Phase IIA.

STAN -- Statement Analyzer (CEVST)

This routine is a control program, which
uses a collection of other routines to pro-
cess each source language statement in
order, and to produce the main dictionary
and a partially encoded version of the pro-
gram, logical order file, from which the
output program module is produced during
Phase III. (See Chart AC.)

ing puo dn-x%oo]
Apuoia1q

¢ (d1A3DIWAI0 /

Aiouorjarq uipw

(WMNAIDIWATA G

dn->e0

Awouoipig
Aipiodwa |
Ul way| ngd

(d1A32)1NdA

-
—»d

- -
e]

il i

Lupo g wbonbuoy
231n0G D15Dg

way) Aouoioiqg ﬂ
Aipiodwa |
dn-100]

AIDINVISYE

LJojpisus)
wis] BuulaQg
~3j@5 [pwW123 Qg

(a9DA3D)0303

LIOWA |2 siossaoid 2804 *
DvyIqQ |02 siosseooad @say| 4

(10§0IdURD)
wis} Buiugeg
~4]8G |OWIIBPOXIH

9 (HOA3DIX3HI

M Jii:l T # W i i
| i | Lo
| e S B Tl|\|l \|1]ﬂ| ||TJ | i |
D T J; o |
— ——] . EEERREE
| o i [T S S A
e ; T T T T ’ | , | t W Cod , | u Joppiauss)
x]}“”‘m;l{!ily\ll‘ - e T 1||}4\‘: e A, W 7 ! ! : | m wis] Buluysq
! - | | C Do -412§ 1248104
L] ,, W | ,_, . 5 (DOAIDNVHII
v i ¥ | | o i 7
| uoinisgng Buiig | i , b !
1 ! ! i
. i | | ‘, i 00 AP) SO
| ! 9 (gSAIINYISS| | i { || ﬁ
i ! i ! i o
i R TS USSR S | Cl
P | | i | i , o I
| | — prowerr i | | . wia] Buj
[[ECTLFRUENCE HEp! | ing Atoucijoig Liuo platy uonpedO H _ I V s x._o,:m
sipoquds puig b BUIDN 090N aunny 00U oo B4n11isgng | i | P
i ! , i : ! O A e R !
[I vwai) | S WIAIDNAGOVW] |6 WIAIDILIDYW] [S (dSAZDIHOENS i : : Lo w 3
L | T T P P
| | | Lo i !
| I - [| | i ! | , |
Lo i B S g h | | | ” ! _, | k | | 1azAjpuy
L W 7_ | o W , | , . 4/ | ” waj| Jojawning
W o I o ” | . W. ‘
i . | i W | N ; o (SdATD) HVOSA
i R T O — | , ! L |
i | V : ,_ ,. |1 / , a
| o oB55 NG | i R O
i P ".I.p boy JMW_SEMJ_ Woj0ig 80IN0G | | Ll ,, ,
i H | a
| [uoionasup Adosy 7 iXeN 8Inv3g LI0IpNjoAg) I |
| ,ﬁ ,, ~ [| 4 , LUDIG JUDJSUCT) ‘worsssadg - W, m
! . [r. (Aon3dAdoD) ENMECH I w
| [|) , S
! P k3 L~ * , ¢ (SDAIDINYISD (AIAID)IVAT
| b [i
L . : | i
S | - — W
|1 R _ , | L
loquAs } ,sossev0ig 0883501 {abog W,Mwmwwmw |« fueLI94045 22108 puniad() [RIA4 _o.L“EoU «Lcum._vcﬂ,“w.n,nu_
Goooo] sulyeq asudlagey CLODW ucliulgeq 010w N d PEINRULICTe) 10} UDDG uonyysang Butiyg Hen I

¢ {ASARDIWASAAQ € (FVAZDHINDYW

& (4GA3D)430DYW

%

i
1
|
|

ozdjpuy
Juswa0g

12 ﬁ,.(:mk:l(km

i

¢ (g¥A3D)aIRY £ SAIDMITS B

{dDAIDIOLYD

oW

(dWAID)IW

.

fosuon T &

L iVdAID T 45VHd

¥
ﬁ
|
|
|
|

7
|
|

3unnoy abossa
sysouBoig anding
{wpaboid o4
avYia Lnd

i

105532019 9Bpssay
s1450uB01Q

(XaAID}OVIAQ

Phase I routine relationships (part 1 of 2)

Figure 16.

37

Phase I

Section 5:

wuv3g
uBLIoNISUE ABENG

{AIAIDIANLNT

| -
| USRS [N
e

1

(NXATDINYLKI

f

!
i 4ueag
LILIRaR NUEXT |
(8dAIDNNDI | % ,
;
. |

(D1AIDIENOLN

JUO3G
] sy g0 | T

)

(SDAIDINVDSD

LT

v VINAZD

oo g
RN QYW

& HdAIDIHINNG | |

g
o [| onng |
| |
ms_zzu_o.,u«@.* vl

x

|

lonusu] QYT

138A32)0ud3y

L403§
HOSU] JONY |

INYAIDONY

]

Phase I routine relationships (part 2 of 2)

Figure 16.

38

Table 3. Phase I decision table (part 1 of 1#)

L]
|Routine: Phase I Control Level: 1
i

P

L T T T

| Routine | Purpose | called Routines | calling Conditions

i 1 1 i

€ T] L]

jPHASE I |Accepts parameters from LPC;| DLPM -- CEVLP |[Always called. |
{ (CEVPA) |reads and performs initial } t 4
i | processing of source | STAN -- CEVST |Always called. |
i | program; and transfers - + 4
| |control to Phase IIA. | VMGET -- CEVGM |When necessary to acquire |
| | | |working storage. |
1 | F 1 4
| | | VMFREE -- CEVFM|To release storage. |
i i 4 L 4
3 1
{Routine: Level: 2 |
L]
L2 Ll T T 1
| STAN |Processes original source |AGO/AIF -—- CEVGO |AGO or AIF instruction {
| {CEVST) | statements during Phase I, | | encountered. 1
i |]and macro-generated b + 4
| |instructions during Phase |ANOP -- CEVAN | ANOP instruction encountered.|
| | IIA. t + i
{ | |BASCAN -- CEVBS |Sequence symbol encountered |
| | | {in name field. }
i | 13 — + i
| | | CATOP ~-- CEVCP |Always called. |
I | F t 4
i | |CCW -- CEVCW |CCW instruction encountered. |
{ i t + 1
| | |copPY -- CEVCY |COPY instruction encountered.|
| | g + 1
H | | MIP -- CEVMP |Machine instruction encoun- |
i | | |tered while in conversational|
| I | |mode. |
| | t + 4
| | |CNOP -- CEVCN |CNOP instruction encountered. |
] | F + i
i 1 |]CXD —-- CEVCX |CXD instruction encountered. |
| | b + 1
{ | | SECT —- CEVCT |Control section statement |
| | | | encountered. {
| | t + 1
| | |pc/DSs -- CEVDC |DC or DS statement |
i | | |encountered. |
t | b + : {
| | | DEFSYM -- CEVSY [Machine instruction |
i | | | encountered. |
| | 3 t 4
i { |DIAG ~-- CEVDX |D102 Undefined sequence |
| [i | symbol s
i | | |D106 Missing MEND statement |
i | | {D110 Missing END statement |
| | k- - + 8!
		DLPM -- CEVLP	Sequence symbol encountered
[in name field, or CSECT	
			implied.
]	k + 1		
{		USE/DROP -— CEVUD	USING or DROP statement
			encountered. {
	t + 4		
(EJECT —— CEVEJ	EJECT statement encountered.
I t 1 1			
		END -- CEVND	END statement encountered. i
I 2 t : 1			
		ENTRY -- CEVEY	ENTRY statement encountered.
L L L i J

Section 5: Phase I 39

‘Table 3.

Phase I decision table (part 2 of 14)

r 1
|Routine: Level: 2 (cont'd) |
} T T T ‘jl
| Routine | Purpose { Called Routines | Calling Conditions |
L 4 _*_ 1 |
L) T] 1
| | {EQU -- CEVQU J|EQU statement encountered. |
|] ¢ } 1
|] |EXTRN -~ CEVXN | EXTRN statement encountered. |
| | F t 4
		GBLX/ICLX —-	GBLA, GBLB, GBLC,LCLA,LCLB,
	{CEVGL	or ILCLC statement	
i	jencountered.		
	t t i		
		ICTL -- CEVIC	ICTL statement encountered.
1	b : 4		
	{ISEQ -- CEVIQ	ISEQ statement encountered.	
I I t + 1			
		LTORG -- CEVLG	LTORG statement encountered.
	k + 4		
		MACDEF -- CEVDF	Macro prototype of model
			statement encountered.
	b + .		
		MACREF -- CEVRF	Macro reference statement
	i	encountered.	
1 ! ¢ : .			
	{ MACRO -- CEVMC	MACRO statement encountered.	
i k t 1			
]	MEND/MEXIT --	MEND or MEXIT statement	
		CEVMX	encountered.
	t + 1		
		MNOTE -- CEVMN	MNOTE statement encountered.
1	t t .		
		ORG -- CEVRG	ORG statement encountered.
I t 1 i			
		PRINT -- CEVPR	PRINT statement encountered.
	- t		
		PUNCH -- CEVPH	PUNCH statement encountered.
I	b + :		
]		REED -- CEVRD	Processing of current
			statement completed.
i ! b + i			
		REPRO -- CEVRE	IREPRO statement encountered.
I I % t 4			
		SETX -- CEVSE	SETA, SETB, or SETC statement
			encountered.
	b fom e : 1		
		SLIT -- CEVSL	Machine instruction
i	{ {encountered while in batch		
]	jmode.		
1 b 1 4			
		SPACE -- CEVCE	SPACE statement encountered.
	H t 4		
		TITLE -- CEVTI	TITLE statement encountered.
I	t 1 1		
		DLKT -- CEVTK	Sequence symbol in name field
			of an instruction within a
			macro. [
	r + 4		
	{DPUT -- CEVTP [Sequence symbol in name field		
		{of an instruction within a	
		jmacro which has not been	
	}	previously included in	
	}	temporary dictionary.	
L L L L]

40

3
Y
o
-
®

& 3.

Phase I decision table (part

3 of 14)

Routine:

Level: 3

Routine

Purpose

Calling Conditions

e e — s

AGO/AIF
{CEVGO)

Processes AGO and AIF
instructions.

-
|
t
|
|
|
I
|
|
I
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

+

EVAL -- CEVEV

T
Called Routines |
4
1)

|First character of an AIF
|operand is a left parenthesis
1

bt cvnsan s oo commme sl s, o4

BASCAN -- CEVBS

v

|First character of an AGO
|operand is a period,

|or character following right
| parenthesis in an AIF operand
|is a period.

i

DLKM -- CEVKM

T

| Sequence symbol encountered
iin operand field of AGO or
|AIF instruction, which occurs
|in user-level code.

i

DLKT -- CEVTK

L]

| Sequence symbol encountered
{in operand field of AGO or
|AIF instruction, which occurs
]in a macro.

4

DIAG -- CEVDX

T

|D1 Improperly delimited

| field

|D2 Invalid symbol in field
|D95 Sequence symbol missing
in operand field
Invalid operand field

Dt e R T S S —p———

|
D115
<

ANOP
{CEVAN)

| Scans the name field of ANOP

|instructions for a sequence

| symbol.
i

DIAG -- CEVDX

D96 No sequence symbol in

name field

P S ——

CATOP
(CEVCP)

L]

|Controls the type and amount
|of parameter variable

| symbol substitution applied
]to the current source

| statement.

BASCAN —-- CEVBS

|Always called unless an error
|return is made from CEVSS.
i

e ankin s won s ol i s

SSCAN -- CEVSS

e e s e e e s e e S S e S e B e o S e 2 e, e S e, S . e S e S e, S B e, S . i

}
|Always called unless the
|statement is GBL- or LCL-.
4

~0
g

CEVCW)

Examines the CCW instruction
for valid operand fields and
correct format.

+
| DEFSYM -- CEVSY

$
|Always called.
4

1
L]

|SLIT -- CEVSL
L

T
|Always called in batch mode.
4

-- CEVEV

4
|Always called in convers-
|ational mode.

i

AN
o
1

-- CEVDX

[SEURIp——"— SIS S e)

4
|D1 Improperly delimited
| field

Invalid expression type
for field
Required operand
missing

—— s oo

|
D14

+—

[o — o, S i O s R i, Pobl W g W— i, T S St o (i, W . . i . S A . ot o A o s St o S . M RO s T s A i . M G, S i M Al amp SA e A e sy, AT, s A s e, SO

CNOP
(CEVCN)

Scans CNOP instructions for
valid expressions and
correct format.

R S e o

-= CEVEV

|Always called to examine
|operand in conversational
|mode.

1

IS S—

DIAG -- CEVDX

P———-—————-—————-—-—H—-———Egdh-——-————————ﬂr————ﬂ
o
t

T
|D1 Improperly delimited
field

Invalid symbol in name
field

Invalid expression type
for field

Invalid expression
value for field
Required operand
missing

{D2

| D6

| D7

D14

e e s e . povi g s i wnnct ol

o

Section 5: Phase I 41

Table 3.

Phase I decision table (part 4 of 14)

r 1
|Routine: Level: 3 (cont'd) |
L |
i T T T 1
| Routine | Purpose | Called Routines | Calling Conditions |
i 1 i 4 4
L] v T T 1
|cXD | SCANS CXD instruction and {DEFSYM -- CEVSY |Always called. |
| (CEVCX) |validates name field. | | |
| t + + {
|DC/DS |scans DC and DS | DEFSYM -- CEVSY {Always called. }
(CEVDC)	instructions. F + .		
		CSCAN -- CEVCS	Always called to examine
			operand.
] F + .			
		DIAG -- CEVDX	[D131 Invalid or missing name
	{	field in DXD statement	
t + + + i			
DEFSYM	Constructs a main dictionary	DLPM -- CEVLP	Symbol in name field.
(CEVSY)	item for all statements withf --+ 4		
	a symbol in the name field,	DIAG -- CEVDX {D1 Improperly delimited	
	except when the symbol is I	field	
	encountered a second time.	{D2 Invalid symbol in field	
			D4 Symbol in name field
			previously defined
b H 4 1 {			
EJECT	Scans the EJECT instruction	DIAG -- CEVDX	D2 Invalid symbol in name
(CEVEJ)	for correct format.	field.	
1 4 4+ 4 '}			
L T T R 1			
END	Scans the END instruction	EVAL -- CEVEV }Always called to examine	
(CEVND)	for correct format and I	operand in conversational	
jvalidity.	[mode.		
	% 1 1		
		DIAG -- CEVDX	D1 Improperly delimited
			field
	i	D2 Invalid symbol in field	
			Dp11 Invalid operand on
			END statement.
	i {D113 END statement		
	i { encountered within a		
		i macro]	
'r 1 { — $ {			
ENTRY	Scans the ENTRY instruction	DIAG -- CEVDX {D1 Improperly delimited	
(CEVEY)	for correct format and i i field		
	validity.		D2 Invalid symbol in name
			field

			D89 Entry point declared in
	}	control section without	
	i	SYSTEM attribute	
	}	D91 Entry point not CZ- or	
i		CHB- in privileged	
] CSECT	
		{D115 1Invalid operand field	
	F - + i		
		BASCAN -- CEVBS	Always called to examine
	-		operand.
F + ¢ t .			
EQU	Scans EQU instructions and	DLKM —-- CEVKM	Symbol encountered in name
(CEVQU)	evaulates and completes the	jfield	
	definition of those express-} + 4		
	ions which can be resolved.	EVAL —-- CEVEV jalways called to examine	
	}	operand.	
	F + 4		
		DLPM -- CEVLP	Symbol encountered in name
		{field which has not been	
			previously defined in main
	i	dictionary.	
L L 1 i 4

L2

Table 3. Phase I decision table (part 5 of 14)

r
|Routine: Level: 3 (cont'd)
L

|]

|

r T T H 1
| Routine | Purpose | Called Routines | Calling Conditions |
I 4 i 4 }
r T T T 2
| | |DIAG -- CEVDX |D1 Improperly delimited |
i | | | field {
i | | |D2 Invalid symbol in name |
{ | | | field {
	i	D4 Duplicate symbol	
			D6 Invalid expression type
			for field
			D7 Invalid expression
			value for field i
			D14 Required operand
			missing
			D17 Required name field {
i i i	invalid or missing i		
			D115 1Invalid operand field
F + + + 1			
EXTRN	Scans EXTRN instructions for	BASCAN -- CEVBS	Always called to examine
(CEVXN)	correct format and validity.		operand.
I r + 4			
		DLPM -- CEVLP	Symbol encountered in operandj
t : 1 lfield. }
r T 4

} | | DIAG -- CEVDX | D1 Improperly delimited |
i I | | field i
| | | | D2 Invalid symbol in name |
| | | | field. |
| | | | D19 Symbol in operand fieldj
| | | | previocusly defined. i

nvalid d fi

g i i iDllS I 1id operan ield }
| GBLX/ICLX |Scans global and local | BASCAN -- CEVBS |Always called to examine |
| {CEVGL) |instructions for correct | | operand. {
| | format and validity. t + {
| | |DLPM -- CEVLP jvariable symbol encountered |}
i | | |in operand field, when |
| | | |instruction occurs in user- |
| | i | level code. |
| | t + 4
		DLKT -- CEVTK	Vvariable symbol encountered
			in operand field, instruction
			occurs in a macro.
	t t 4		
		DPUT -- CEVTP	Variable symbol encountered
{		in operand field which has {	
i	i	not been defined in temporaryi}	
			dictionary.
	F +		
i		EVAL -- CEVEV	Subscripted variable symbol
			encountered in operand field.
	b + {		
		DIAG —- CEVDX	D1 Improperly delimited
			field
			D4 Duplicate symbol
i			D6 Invalid expression typej
		for field H	
	i	D27 Nonblank name field }	
] i i	D97 Missing subscript {		
			D98 Dimension exceeds 255
			D115 Invalid operand field
L L L L J

Section 5: Phase I 43

Table 3.

Phase I decision table (part 6 of 14)

L h)
|Routine: Level: 3 (cont'd) |
% Ll ¥ L "‘
| Routine | Purpose | Called Routines | Calling Conditions |
F + i t 1
| ICTL |Scans ICTL instructions for }|EVAL -- CEVEV [Always called to examine |
| (CEVIC) |correct format and validity.| {operand i
| | t - + 1
	{DIAG —-- CEVDX {D1 Improperly delimited		
	i } field		
			D2 Invalid symbol in name
	i	field	
			D6 Invalid expression type
			for field
		{D7 Invalid expression	
			value for field
	{ D14 Required operand miss-		
]		ing	
	}	b51 Statement occurred i	
			illegally
b + $ + 1			
ISEQ	Scans ISEQ instructions for	EVAL -- CEVEV JAlways called to examine	
(CEVIQ)	correct format and validity.		joperand.
	t + i		
		DIAG -- CEVDX {D1 Improperly delimited	
			field
		{D2 Invalid symbol in name	
			field I
	{	D6 Invalid expression type	
		} for field	
] { {	D7 Invalid expression		
		{ value for field	
b + t + !			
LTORG	Scans LTORG instructions for}DEFSYM -- CEVSY	Always called.	
(CEVLG)	correct format		
b + e t {			
MACDEF	Enters the name of macros in	COPY -- CEVCY	COPY statement encountered.
(CEVDF)	the macro name dictionary b +)		
	and controls the processing]CATOP -~ CEVCP	COPY statement encountered.	
lof macro definitions. + {			
	1DIAG -— CEVDX {D86 Macro name redefines		
i	I machine operation .		
			D87 Invalid operation in
		i macro definition	

| [{ i
: | |MACLKT -- CEVLM [Macro prototype encountered. |

! k + i
= | | MACPUT -- CEVTM |[Macro name not in macro |
| | | jdictionary. |
| | i t 4
| | | SUBOP -- CEVSP |Macro prototype encountered. |
: | | GETOP -- CEVGP {END used as macro name. |
b + + + 4
iMACREF [Controls processing of macro|DLKM -- CEVKM {Symbol in name field of macro|
| (CEVRF) | references. | |instruction. |

[b t 1
{ | |DIPM —- CEVLP |Symbol in name field of macro|
| | { finstruction not previously |
| | | jdefined. |
| | b + 4
| | |MACLKT -~ CEVLM |Always called during |
| | | | Phase IIA. |
| | t + {
| | |VMGET -- CEVGM |To acquire working storage. |
L L o N L d

4y

Table 3.

Phase I decision table (part 7 of 14)

r - 1
|Routine: Level: 3 (cont'd) |
F T T T 1
| Routine | Purpose | Called Routines | Calling Conditions |
j . } i 4 i
L T T 1 1
| | |CEVMLA (external) |[Macro definition not in]
| | | |storage. |
| i r + 4
}] |CEVMLB (extermnal) |[Macro found in library index |
| | | | by CEVMILA. |
] | % + 1
| | | PARAMAC--CEVPM |Always called during |
i | | |Phase IIA. i
| | k 1 1
| | | DIAG -- CEVDX | D22 Error in macro library |
i | | | retrieval |
i i | | D59 Error in macro |
i | | | definition |
F t + + 4
| MACRO |Scans MACRO instructions for|DIAG -- CEVDX | D27 Nonblank name field {
| (CEVMC) |correct format | | i
b + t t {
MEND/MEXIT	Processes MEND and MEXIT	BASCAN -- CEVBS	Called to examine MEND name
(CEVMX)	instructions.		field when in Phase I and
			the MEND is not a generated
{			statement.
1	b { i		
i i	DIAG -- CEVDX	Dp2 Invalid symbol in name	
[I	field I	
i {		D114 Instruction invalid	
			outside macro
F + } { 1			
MIP	Scans machine instruction	EVAL -- CEVEV	Always called to examine
{ (CEVMP)	operands for valid operand		operand.
	fields and correct format. } + i		
		DIAG -- CEVDX	D1 Improperly delimited
			field
}			D6 Invalid expression type}
j			for field
{			D7 Invalid expression }
			value for field
			D10 Attempted store into
			literal. 1
			D14 Required operand
1 l	[missing		
prm et ¥ + 4			
MNOTE	Scans the operand of MNOTE	BASCAN —-- CEVBS	Statement not previously
} (CEVMN) jinstructions for correct		determined to be invalid.	
	format and validity. b $ -—4		
{ i	EVAL -- CEVEV	Operand does not begin with	
	[a quote.	
	F t 1		
		DIAG -- CEVDX	D1 Improperly delimited
i			field
{		D2 Invalid symbol in field]
			D6 Invalid expression type
			for field
i			D115 Invalid operand field
L + + + 1			
{ORG	Scans ORG instructions for	EVAL -- CEVEV	Always called in conver-
{CEVRG) jcorrect format and validity.		sational mode. i	

1 L 4

T R L]
} ! |DIAG —-- CEVDX D1 Improperly delimited I
i { I [field I
i | | |D2 Invalid symbol in name |
t | | | field n
| | | | D6 Invalid expression typej
} | | | for field |
i L — L L 3

Section 5: Phase I 45

Table 3.

Phase I decision table (part 8 of 14)

I 1
|Routine: Level: 3 (cont'd) |
L 4
r T 3 1§ a
| Routine | Purpose { Called Routines | Calling Conditions |
L 4 1 i 1
r 1 b3 L3

| PRINT |Scans the PRINT instruction |BASCAN -- CEVBS |Always called. }
| (CEVPR) |for correct format and b 4 4
| | validity. |DIAG -- CEVDX |D1 Improperly delimited

i | | | field |
| | | {D2 Invalid symbol in name |
| | | | field |
i | { D21 Invalid operand for |
| | | } PRINT statement |
| | i ID118 Inconsistent operand |
L 1 I i i
r ¥ T ¥ 1
| PUNCH |Analyzes the PUNCH | DIAG -- CEVDX |Always called. |
| (CEVPH) | instruction. | {D23 PUNCH statement

| | } | produces listing only. |
F + t + .|
| REED |{Read source input. |LPC Get Line -- |Phase I processing of current|
| (CEVRD) | | CFADB1 |source line completed.

| | t + i
		GETOP -- CEVGP	Current statement other than
] ja macro prototype or macro		
		jcall.	
	3 + 1		
		DIAG -- CEVDX iD3 Card out of sequence i	
	i {D121 Too many continuation		
			lines
			D135 Continuation cards have
			non-blank characters
			before continue column,
	i	characters ignored	
	k + i		
		VMGET -- CEVGM	Get storage for source lines.
L i E 1 '			
T T T T 1			
REPRO	Analyzes the REPRO	DIAG -- CEVDX {Always called.	

| (CEVRE) | instruction. | j D24 REPRO statement

| | { { produces listing only. |
L. [i i 1
T T { + {
| SECT |Checks the validity of the |DLPM -- CEVLP |Symbol or blanks encountered |
| (CEVCT) |control section instructions] |in name field. |
| | (COM, START, CSECT, DSECT, |} } i
| | PSECT) . | EVAL -- CEVEV | START instruction

| | | |encountered.

| | t t 1
| | |DIAG -- CEVDX D1 Improperly delimited |
} | | { field |
		D2 Invalid symbol in name	
			field
			D4 Duplicate symbol
			D6 Invalid expression type
		} for field	
			D7 Invalid expression

			value for field
	{	D15 Incompatible control	
	i	section statements	
			D16 Invalid control section
	{ { attribute name		
		D17 Required name field	
		{ invalid or missing	
			D56 Entry point name same
			as module name
	i {D89 Entry point declared in		
			control section without
			system attribute

L i L 1 1

46

Table 3.

Phase I decision table (part 9 of 14)

r 1
{Routine: Level: 3 (cont'd) i
IL R T T . T ‘ll
| Routine | Purpose | Called Routines | Calling Conditions |
- ¢ t 1 {
] | | | D91 Entry point not CZ- or |
| | | | CHB- in privileged {
{ | H | system CSECT |
i | | |D112 START not first controlj
| | | | section statement |
{] | {D118 Inconsistent operand. |
| | t H 1
i | |BASCAN -- CEVBS |A COM, PSECT, or CSECT |
i | | |instruction encountered. |
— 4 1 t {
| SETX | Scans SETA, SETB, and SETC |DLKT -- CEVTK |Macro level greater than {
} (CEVSE) |instructions for correct | | zero. i
| | format and validity. t + 4
| | |EVAL -- CEVEV |a) symbol in name field is |
i | | | subscripted. |
} | i |b) Instruction is a SETB or |
; { 1 i SETA. }

L} T 1
| | | DLKM -- CEVKM |a) Macro level is zero. {
|] | |b) A type attribute occurs inj
] | | | the operand of a SETC in- |
| | | | struction. |
[| t —— 1 i
| | | BASCAN -- CEVBS |SETC instruction being {
| | | | processed.]
| | k 1 i
i | |DIAG -- CEVDX | D1 Improperly delimited {
| I 1 | field]
i | | |D2 Invalid symbol in name |
			field
]		D6 Invalid expression type	
			for field
i		D7 Invalid expression {	
			value for field {
			D84 Invalid subscript value
			D85 SET statement incom-
H		{ patible with definition]	
			D93 More than 8 characters
			in string
1 | | | D97 Missing subscript i

D115 1Invalid operand field
| 1 ! ! : !
8 T K T T 1
|SLIT |Scan for literals. | None | |
(CEVSL)
vy | — ; , ;
| SPACE |Scans the SPACE instruction |EVAL -- CEVEV |Always called in conver- |
| (CEVCE) | for correct format and I |sational mode. i
i |validity. b + 4
| | | DIAG -- CEVDX |D1 Improperly delimited |
I | | x field l
| { | |D2 Invalid symbol in name |
a | | 1 field l
i | | | D6 Invalid expression typej
for field

@ | ! ; i
|TITLE |Scans the TITLE instruction |BASCAN -- CEVBS |Always called to examine |
| (CEVTI) |for correct format and | joperand. |
i |validity. b + 4
i | | DIAG —- CEVDX | D2 Invalid symbol in name |
| | | field. |
i i | | D27 Nonblank TITLE name |
| | | | field, and not the 1
i | | | first TITLE statement |
L L i 1 i

Section 5: Phase I 47

Table 3. Phase I decision table (part 10 of 14)

r 1
|[Routine: Level: 3 (cont'd) |
1]
r T T T 1
| Routine | Purpose | Called Routines | Calling Conditions |
b { - + t 1
		D48 Truncated value
]	D109 TITLE name field ex-
	{	ceeds 4 characters
	i }	p115 Invalid operand
¢ 4= t {		
USE/DROP	Scans USING and DROP	EVAL -- CEVEV
(CEVUD)	instructions for correct {	sational mode.
	format and validity. ¢ + 4	
		DIAG -- CEVDX
I		
	H	D6 Invalid expression type
		{ for field
	i {D7 Invalid expression	
		i value for field
i		{p12 Duplicate use of regis-
		D14 Required operand miss-
	{	register specification
% L i 1 'Jl		
Routine: Level: &		
% L] T 3 {		
copy	Copy lines from library.	CEVMLA
(CEVCY)		joperand is a valid symbol.
	t t i	
i	CEVMLB [Code to be copied is found in	
I		{library.
l b 4 j		
		DIAG -- CEVDX D14 Required operand miss-
[: ing	
[[library	
	{	D28 Copied statements con-~
	i i tained COPY statement	
		{D115 1Invalid operand field
I ! F + .		
		VMGET -- CEVGM
1 4 4 4 b]		
r T T T 1		
EVAL	Evaluates an arithmetic or	BASCAN -- CEVBS
(CEVEV)	logical expression designat-} + 4	
	ed by the calling module } DIAG —-- CEVDX	DS Undefined symbol
	and returns with the value	
	and type of expression.	
i		
i		D9 Multiple literals in
		D74 Unbalanced parentheses
		{D75 Consecutive operators
	i	in expression
	{	D76 Consecutive
		{ terms in expression
	}	D78 Excessive parentheses
	{ i in expression	
	i D79 Excessive terms in ex-	
		i pression
—— A i_ P S 3

&
o

Table 3.

Phase I decision table (part

11 of 14)

r
JRoutine:

Level: 4 {cont'd)

Routine

e

Purpose

Called Routines

Calling Conditions

s o e -, o o . o S Gt i, S o St St S S e e S S (ot S~ — S St P> M o S o ot A . s . st e, 2]

sion of relocatable
terms

Attribute unavailable
outside macros

eter

Undefined variable
symbol

Missing subscript
Value of expression
causes overflow

|
|D115 1Invalid operand field

Multiplication or divi-

Invalid subscript value
Invalid symbolic param-

L O s

LKM -- CEVKM

Symbol is encountered.

9]

ymbol is encountered.

e e . . e e, St s, A e B s S e e s S Pt et e e]

SCAN -- CEVCS

E

teral is encountered.

D
DLPM -- CEVLP
C
D

LKT -- CEVTK

ariable symbol encountered
nside a macro.

<

2}
=}
<}
0

-= CEVGD

ecimal self-defining term
ncountered.

oo

:

-~ CEVGH

Hexadecimal self-defining
term encountered.

[l
t
-
4

-=- CEVGB

L it st e el e ad

|Binary self-defining term
|encountered.
4

ECHAR -- CEVGC

T
|Character self-defining term

|encountered.
4

PSCAN -- CEVPS

¥
|Parameter symbol encountered

inside a subscript.
p
4

GETOP
(CEVGP)

[S s S o St e it S i S S Y. . S i . s WA BN g, B, QU s o S G, g, I) S . e, PRSP . SR, W (S P U s s S S g, i ORI S KB, oo, S . i o B o . g W

|Isolates and identifies the
| operation code mnemonic of
| current source statement.

o s e e e st . e e W . S o S S o o —

SUBOP -- CEVSP

+
|Always called if current
|statement is not commentary.
4

MACLKT -- CEVLM

T
|Operation code not found in
|operation code table, or if

|in table, the operation code

|has been redefined as a
{macro.
4

MACPUT -- CEVTM

]

|Operation code found in the
|macro name library index.

}

DIAG ~- CEVDX

D43 Undefined mnemonic

operation

CEVMLA

[o e s o ot e g e S o e, S (= s, S S o R G S e, ot S i, W " b, o S, S S oo, Bo, S s Wi S, g Bl H

P——

|Definition for user-level
|macro instruction not pro-
jvided by user, a library is
|available, and library not
|previously searched for the
|macro name.

4

b e e v o s s ool st e et e e e camrme. . wpm s e sl s o selbes s sy sncinm swaans s, wbi oo s sl e v b mwvewn smen, bsn o wsssn, sdbon s soldath e, i st bt s e s . s i e

Section 5: Phase I

49

Table 3.

Phase I decision table (part 12 of 14)

r 1
|Routine: Level: 5 |
k T T T !
| Routine | Purpose | Called Routines | Calling Conditions |
L 4 4 i 4
T L] T]
|cscanN |Collects and analyzes each | EVAL -- CEVEV |Nonnumeric duplication fac-]
| (CEVCS) |subfield of the data | |tor, length modifier, scale |
| |definition and produces a | modifier, and/or exponent |
: :eonstagt item fgr each 1 !modlfler encountered. }
operand examined. , { 1
| | | EDEC -- CEVGD |Numeric encountered in a sub-|
: { ! ifield. !
L § T 1
| | | BASCAN -- CEVBS |[Always called. |
| | t + 4
i l | DIAG -- CEVDX | D45 Multiple operands in |
| | | | literal |
| i { |Du6 Zero duplication factor|
| | } { in literal i
	{	Dus Truncated value	
			D49 Invalid hexadecimal
		i constant	
			D50 Invalid binary constant
			D53 FP characteristic out
			of bounds i
		[D54 All precision lost	
		{ during scaling	
			D57 Improper operand for V-
i		type adcon	
			D58 Improper operand for R-
{	i type adcon.		
]	{	D60 Invalid type subfield	
			D61 Invalid length modifier
			D62 Scale modifier not
		permitted	
			D63 Exponent modifier not
	{ permitted		
			Dé64 Exponent modifier out
		i of range [
			D65 Scale modifier out of
		{ range	
			D66 Multiple constants
	i i not permitted		
			D67 Data omitted from DC i
		I operand	
			D115 Invalid operand field
			D116 Invalid decimal
	{ constant		
	i	D132 Improper operand for	
! 1 E l O-type adcon !			
r T T k]			
DLKT	Locates a specified symbol	None i]	
(CEVTK)	in the temporary dictionary		
	for the current macro level.	{	
t + } } 1			
DLPM	Searches for a given symbol	None	}
(CEVLP)	in the main dictionary, and		
	creates a skeletal entry forj		
	the main dictionary if the	} i	
	symbol is not found. i		
b t + } 1			
DPUT	Creates a skeletal item for	None	
(CEVTP)	the specified symbol in the		
	temporary dictionary, for {		
	the current macro level.		
L 1 1] e 4			
]] L] T			
MACLKT	Searches the macro name	None] }	
(CEVLM)	dictionary for a given name.		
L 4 i 1 J

50

Table 3. Phase I decision table (part 13 of 14)

r 1
|Routine: Level: 5 {(cont'd) i
t T T T 4
| Routine | Purpose | called Routines | Calling Conditions |
t + + + 4
{ MACPUT | Inserts a skeletal macro | None | ;
| (CEVTM) |name dictionary item in the | | |
| jmain dictionary, and the | | i
{ jmacro's hash number in the | | |
| |macro name hash table. | | |
% 1 + + 4
| PSCAN |Analyzes parameter | EBIN -- CEVGB |Binary self-defining term |
| (CEVPS) |arguments. | | encountered. |
| | k t 4
| | | ECHAR -- CEVGC |Character self-defining term |
{ |] | encountered. i
] | k + 1
i | | EDEC -- CEVGD |Decimal self-defining term i
| | | | encountered. i
| | t + 4
i | | EHEX -- CEVGH |Hexadecimal self-defining |
| | | |term encountered. I
t + + + |
| SUBOP | Extract operation code from | SSCAN -- CEVSS |§ found in op code. |
| (CEVSP) | source line. | | |
!r L 8 1. L %
jRoutine: Level: 6 |
k T T T {
| BASCAN | Scans the portion of the | DIAG -- CEVDX |D1 Improperly delimited |
| {CEVBS) |source language statement | | field |
| | specified by the callers and| |D2 Invalid symbol in fieldj}
i |identifies the syntactic | |D31 Symbol exceeds 8 char- |
| | components of that field. | acters in length |
| | | | D55 End of statement]
| | | | occurred before |
| | | { processing was |
| | | | completed }
{ | | |D71 Invalid binary self- |
i | | | defining term i
H i | |D103 Invalid character in {
| | | | statement |
b { 1 t {
EBIN	Converts a binary self-	DIAG -- CEVDX	D71 Invalid binary self-
(CEVGB)	defining term into its		defining term
	binary equivalent.		
b 1 . t 1 !			
ECHAR	Converts a character self-	DIAG ~-- CEVDX	D83 Invalid character self-
} (CEVGC)	defining term into its		defining term {
	binary equivalent.		
k + + + {			
EDEC	Converts a decimal self-	DIAG -- CEVDX	D72 Invalid decimal self-
(CEVGD)	defining term into its		defining term {
	binary equivalent.		
k + + + 4			
EHEX	converts a hexadecimal self-	DIAG -- CEVDX	D70 Invalid hexadecimal
(CEVGH)	defining term into its		self-defining term.
i	binary equivalent.		
t + + + 4			
SSCAN	Perform string substitution.	EVAL -- CEVEV	Subscript encountered.
{ (CEVSS)	t 4+ 4		
I	DLKT -- CEVTK	Pparameter of local variable	
! | | | symbol encountered. |

{ t + 4
% | | DLKM -- CEVKM |Global variable symbol |
| | | |encountered. |
L i L 4 1

Section 5: Phase I 51

Table 3.

Phase I decision table (part 14 of 14)

v 1
|Routine: Level: 6 (cont'd) |
% T ¥ T - 1l
| Routine | Purpose | Called Routines | Calling Conditions |
t } : .
		DIAG -- CEVDX	D7 Invalid expression val-
		{ ue for field	
	! {D8 Invalid attribute		
	} D84 Invalid subscript valuej		
		jD88 Invalid symbolic param-	
			eter
			Doy Invalid substring
			notation
			D97 Missing subscript
i } {D107 More than 255 char-			
	{	acters in string	
			D108 Substring notation
	{	inconsistent with	
	H } substring length		
	k + 4		
		VMGET ~- CEVGM	To get working storage.
1 AL L 1 4			
)			
Routine: Level: 7			
} T Ll ¥ ‘1			
DLKM	Locates a specified symbol	None	
(CEVKEM)	in the main dictionary.	i	
i 1 I 3]			
§] T T			
DIAG	Process diagnostic	LPC Get Line --	Always called in conversa-
(CEVDX)	messages.	CFADC1	tional mode.
L 1 L L }

The statement analyzer is employed in
Phase I to process the original source
statements and again in Phase IIA to pro-
cess the source statements generated by the
expansion of macro instructions.

Entry Points: CEVST, CEVST1

Calling Sequences: INVOKE ASTAN
INVOKE ASTO0S0
Routines Called:
AGO/AIF EJECT MNOTE
ANOP END ORG
BASCAN ENTRY PRINT
CATOP EQU PUNCH
CCW EXTRN REED
CNOP GBLX/LCLX REPRO
COPY ICTL SECT
CXD ISEQ SETX
DC/DS LTORG SLIT
DEFSYM MACDEF SPACE
DIAG MACREF TITLE
DLKT MACRO USE/DROP
DLPM MEND/MEXIT
DPUT MIP
Exits: Phase 1. Same exit made for normal
completion and error
condition.
Phase 2. Return to MACREF.
OPERATION: This routine has two modes of

operation; normal and bypass.

52

Normal Mode: In the normal mode, source
lines are obtained and processed to produce
some change in the information compiled by
the assembler to further the production of
an object program. Depending upon the type
of source line, the processing may result
in the growth of the logical order file of
the program, additional definition entries
in the dictionaries, changes in status, the
production of diagnostic messages or some
combination of these effects.

A skeletal logical order file entry is
made for each new statement encountered.
Subsequently, each routine that acquires
relevant knowledge appropriately updates
the entry.

All statements pass through a subrou-
tine, GETOP, whose purpose is to obtain and
classify the operation code.

Statements within macro definitions are
selected for separate handling, which
results in making the macro conveniently
available for later reference. All other
statements are directed to the CATOP rou-
tine. It has the responsibility to perform
all required variable symbol and parameter
substitution in the name and operand
fields. Upon exiting from CATOP, macro
instructions and the assembler instructions
are split off for individual handling while
machine instructions are grouped by type.

Bypass Mode: The bypass mode is initiated
by the processing of an AGO or true AIF
command whose transfer point is a sequence
symbol which is as yet undefined. 1In this
mode, source lines are merely bypassed
until a line containing the desired
sequence symbol is encountered, at which
time normal processing is resumed.

While processing in bypass mode,
sequence symbols occurring in the name
field are always defined by the construc-
tion of a local dictionary item, unless the
line is within a macro definition. Other-
wise, bypassed statements are not processed
in any way except that END statements and,
during macro expansion, MEND statements are
recognized to prevent an incorrect branch
statement from overrunning the source
program.

Exrror Checks:
¢ Missing MEND statement.
s Undefined sequence symbol.

e Missing END statement.

REED -- Obtain Next Source Statement
{CEVRD)

This routine provides the interface with
the language processor control (LPC), to
obtain source lines. It concatenates con-
tinuation lines to provide STAN with a con-
tinuous statement, performs sequence check-
ing, and switches the source of input
statements between LPC, macro definitions,
and COPY library statements. The altered
line processing of corrections to the
source program is also performed by this
module. (See Chart AD.)

Entry Point: CEVRD

Calling Sequence:

INVOKE AREED
PO end-of~-file return
“en normal return 4(R14)

Routines Called:

e Internal - DIAG, GETOP, VMGET

s External - CFADC1 (Get next line entry
point of LPC)

s Macro Instructions - CALL

Exit: Normal
End-of-file
OPERATION: During Phase I this routine

obtains source .lines directly from LPC.
During Phase IIA the principal source of

input is previously processed macro
definitions.

Regardless of its origin, a source line
may be in either keyboard or card image
format and a source statement may comprise
multiple source lines, through the state-
ment continuation capabilities.

When satisfying a COPY statement or
macro definition request, the entire
library element is copied line by line into
the assembler's working storage by the
appropriate subroutine. Then, requests for
source lines are processed from the stack
of saved lines until the stack is
exhausted, whereupon the input source sta-
tus reverts to that in which the COPY sta-
tement or macro instruction was encoun-
tered. A macro definition may contain a
COPY statement, thus requiring a push down
stack.

In servicing a demand for the next
source statement, if a continued source
line is encountered, all portions of the
statement are combined into a single con-
tinuous line which is constructed in
assembler working storage. Normally, this
reconstruction is a blind process, since
the begin, end, and continue columns are
clearly defined for both card and keyboard
formats. However, when the macro defini-
tion switch (MDS) is set to 1, declaring
that the current statement is a macro pro-
totype, or when analysis of the operation
code indicates a macro instruction state-
ment, logic is applied to determine whether
the source lines are in the alternate card
or keyboard statement format. Thus, line
continuations are handled solely in the raw
input routine, and the remainder of the
processor sees only continuous, simply
scannable statements.

This module is also responsible for per-
forming and commenting diagnostically upon
failures in the sequence check demanded by

the prevailing ISEQ requirements.

Language Processor Control Input: The LPC

contains an entry point for the assembler's
use when the next source line is required.
The assembler calls the LPC with a line
number (initially zero) and LPC responds by
returning the source message corresponding
to the next line number in sequence. The
line number is expected to occupy one word
and be in packed decimal format with seven
integexr places and a sign digit that is
positive at all times. The information
supplied to the assembler:

e The location of the first byte of the
source message.

e The length of the message in bytes.

Section 5: Phase I 53

e A format indicator (keyboard or card
image).

e The line number of the message.

Alternate Modes of Input: Input is
cbtained from three sources other than its
LPC interface: COPY (and MACRO) library
lines, macro definition statements, and
previously processed source statements at
the user level (in response to a backward
AGO statement).

Library lines are the unedited source
lines of macro definitions or COPY ele-
ments. When such lines are required by the
assembler (in response to a COPY instruc-
tion or a reference to a library macro
definition), COPY or MACREF initiates
appropriate input/output activity and
copies all the lines of the library element
into working storage. The lines are
sequentially chained by a control word pre-
ceding the line. In COPY mode, the chain
is followed and source lines are procured
from working storage until the end of the
chain is reached. The previous input
source mode is then reinstated from a push-
down list.

Macro definition statements are state-
ments which have previously passed through
STAN, which have logical-order-file
entries, and which have had continuation
lines removed. In macro definition mode
the logical-order-file is followed to pro-
cure each statement, until it reaches a
MEND statement, whereupon it reinstates the
previous input mode and exits with an end-
of-input indication.

For a backward AGO statement at the user
level, outside of macro definitions, the
source statement control chain is followed
as for COPY mode, except that the state-
ments have had continuation lines removed,
as in macro definition mode; hence, con-
tinuation line processing is bypassed.

Source Program Correction Facility: The
assembler provides the conversational user
with the ability to correct or delete the
last source statement presented to the pro-
cessor without incurring restart of the
entire assembly.

This capability is provided by this
module by recording the internal status of
the assembler as each source statement is
completed. Thus, at any time prior to com-
mencing the processing of the next state-
ment, the effect of the current statement
can be erased by replacing the current sta-
tus information with the previous status,
and by detaching from linkage chains any
dictionary items constructed since the pre-
vious status was recorded.

54

Determination of Changes: Three line num-
bers are maintained to assist in determin-
ing the effect of a source program change
upon the assembly. SLINE is the number of
the last line received from LPC. PLINE is
the number of the last line of the last
statement assembled. This statement is
represented by the "current status® and is
not final. ALINE is the number of the last
line of the next-to-last statement
assembled. This statement is represented
by the "previous status™ and is final.

If LPC returns the assembler's call for
the next line with an "altered line" code,
the changed line having the lowest number
is examined. If its line number is greater
than SLINE, a condition which can occur on
restarts, the change has no effect on the
assembly, and the line following SLINE is
again requested.

If the changed line is not greater than
SLINE but is greater than PLINE, the change
has occurred during the accumulation of
continuation lines for a statement which
has not yet been seen by STAN. The lines
presently accumulated are erased, SLINE is
set to the value of PLINE, and the assembly
continues by requesting the line following
PLINE.

If the changed line is not greater than
PLINE but is greater than ALINE, the pre-
viously assembled statement is invalid.

The current status indicators are replaced
by the previous ones, hash linkages in the
main hash table which point to storage used
since the previous status was recorded are
restored, and the previously assembled sta-
tement is effectively erased. SLINE and
PLINE are set to the value of ALINE in
order to prevent a second attempt to erase
before a new statement has been received.
The assembly continues by requesting the
line following ALINE.

GETOP_-- Collect and Identify Operation
Code (CEVGP)

This routine isolates and identifies the
operation code mnemonic of the current
source statement. (See Chart AE.)

Entry Point: CEVGP
Calling Sequence: INVOKE AGETOP
Routines Called:

e Internal - DIAG MACPUT

MACLKT SUBOP
¢ External - CEVMLA

Exit: Normal

OPERATION: Lines that start with * or .#*
and contain only a name, or are entirely
blank in the statement area, are recognized
as commentary.

Any parameter or variable symbol substi-
tution indicated in the operation code is
satisfied immediately. The resultant
character string is subjected to look-up in
the following order:

* Operation code table.

® Macro name dictionary for a match to a
macro definition item.

» Macro-library search (via CEVMLA).

The failure of the preceding steps
results in diagnosing the mnemonic code as
undefined and treating the statement as
commentary, unless the statement is a macro
model statement or the assembler is in
bypass mode. 1In these cases the mnemonic
is ignored.

If a macro name is found in the macro
name dictionary, the location of the item
is placed in the logical order file entry.
If the item is found after searching the
macro library, the library position infor-
mation is saved for the macro reference
processor routine (MACREF) for later pro-
curement of the macro definition.
Thereafter, this case is processed as if
the macro name had been found in the macro
name dictionary. 1In each case, the current
IOF entry is supplemented with the appro-
priate directive code and machine instruc-
tion code information.

Macro name dictionary items are kept in
working segment 2, but are located through
a different hash table from the one used
for ordinary symbols. This permits macro
names to duplicate location symbols without
confusion and with a minimum of inter-
ference for the user of the main dictionary

Error Check: Undefined nmemonic code.

SUBOP -— Substitute into Operation Code
Field (CEVSP)

This routine isolates the operation
field of a source statement and performs
the substitution of any variable symbols
that may occur within the field. The
operation code resulting from the substitu-
tion determines the further processing of
the source statement. (See Chart AF.)
Entry Point: CEVSP
INVOKE ASUBOP
«ee error return
vos normal return

Calling Sequence:

Routines Called: SSCAN2
Exit: Normal
OPERATION: The current statement is

scanned for the first blank. The first
nonblank folliowing the first blank is taken
as the start of the operation field. The
field is scanned for ampersands or blanks.
If an ampersand is found, the SSCAN2 entry
to SSCAN is initialized and called to per-
form the character substitution. The sub-
stituted operation mnemonic is built up in
working storage. Upon return from SSCAN2
the scan for ampersands or blanks is
resumed since variable symbols may be con-
catenated to form a single mnemonic. The
occurrence of a blank terminates the scan.
Any characters from the original field not
moved during the variable symbol substitu-
tion are concatenated with the contents of
the work area, and the length of the result
is checked for validity. Valid results are
left-justified on a field of blanks at
location OP, where the resultant mnemonic
is available for later use.

CATOP -- String Substitution Control
{CEVCP)

This routine controls the type and
amount of parameter and variable symbol
substitution applied to the current source
statement. It is called before the state-
ment is delivered to the components of STAN
for processing. (See Chart AG.)

Entry Point: CEVCP

Routines Called: BASCAN, SSCAN

Exits: Normal
Error detected in SSCAN
OPERATION: Substitution is performed arbi-

trarily on the operation code field by
GETOP. This routine examines the operation
as determined by GETOP, applying the fol-
lowing rules:

s If GBLx or LCLx, no further substitu-
tion is attempted.

s If AIF or SETB:

String substitution of parameters and
SETA and SETC symbols is performed
unconditionally in the operand field.

SETB symbols are substituted in the
operand if the variable symbol is
encountered within apostrophes.

When not within apostrophes, SETB sym-
bols are substituted in the operand
when the adjacent characters indicate
concatenation.

-

Section 5: Phase I 55

¢ If SETx, substitution is not performed
in the name field.

In all other cases, substitution is per-
formed in both name and operand fields
unconditionally. Whenever substitution
actually results in character string repla-
cement on a statement, a new version of the
statement reflecting the substitution is
produced to replace the original line for
all subsequent processing.

After substitution, this routine calls
BASCAN to analyze the contents of the name
field and leaves the results for later ana-
lysis by components of STAN. This routine
also determines the start of the operand
field, posts the incremwent in the current
ILOF entry, and sets BSSCAN to the location
of the start of the operand field.

MIP -- Machine Instruction Operand Scan
(CEVMP)

This routine scans the operands of
machine instructions and checks for valid
operand fields and correct formatting. It
assumes that BSSCAN is set by the caller to
the address of the first character of the

operand. (See Chart AH.)

Entry Points: CEVMP1 CEVMP?7
CEVMP2 CEVMPS8
CEVMP3 CEVMP9
CEVMP4 CEVMPA
CEVMPS5 CEVMPB
CEVMP6

Calling Sequences: INVOKE AOP XXX

xxx may have the following values:
RR1 RX1 RS2 Ss1
RR2 RX2 SI1 552
RR3 RS1 SI2

Routines Called: DIAG, EVAL
Exit: Normal
OPERATION: For each type of instruction

there is a main stem of the subroutine
which checks to see that the required
operand fields are present and that these
are properly delimited. These main stems
then call subroutines intermal to this pro-
cessor to examine the components of the
operand field; these, too, are checked to
see that required parts are present and
that they are correctly delimited.

Exror Checks:

e Major operand fields must be separated
by a comma.

e A1l major operand fields must be
present.

56

e The end of an instruction operand must
be delimited by a blank.

¢ Expressions with a left parenthesis
must be delimited on the right by a
right parenthesis.

e Expressions within parenthesis not
separated by operators must be
separated by a comma.

e Expressions representing registers must
not exceed an absolute value of 15.

e Expressions representing lengths must
not exceed absolute values of 16 or
256, depending upon whether they are
represented by four or eight bits,
respectively, in the individual
instruction.

e To be valid an expression representing
a base register must be absolute, null,
or indeterminant.

e To be valid an expression representing
a length must be absolute, null, or
indeterminate.

e Nothing can be stored into a literal.

® An expression representing a shift
value must be absolute or

indeterminate.
BASCAN -- Basic Source Langquage Scan
(CEVBS)

This routine scans part of a source lan-
guage statement in order to identify the
syntactic components of the language that
appear within that part of the statement.
It assumes that certain storage areas have
been set by the caller. These storage
areas are:

BSSCAN Address where scanning is to begin.

BSMAX Address of last byte in source
statement.

BSMI Indicates scan mode.

Hex Value Mode Action
00 Blank Resume scan at next
nonblank character.
12 Period Previous delimiter

was a period; in-
terpret the new
term as a fraction
if it is numeric or
as a sequence sym-
bol if it is non-
numeric.

14 Character- Previous delimiter
string was a single quote;
resume scan at cur-
rent character, in
character - string
mode.

40 Name
field

Causes scan to rec-
ognize commentary
and/or blanks in
the first scanned
column(s).

80 Continu-
ation

Previous delimiter
was a nonnumeric
character after a
decimal integer
string; use prev-
ious delimiter as
the first character
of the new term.

Any other
delimiter
value
(see BSMI
output
values
below)

Term Previous delimiter
was a comma, paren-—
thesis, equal sign
or arithmetic oper-
ator; resume scan
at current charac-
ter, initialized
for a new term.

FAL Indicates whether expression is arith-
metic (0) or logical (1).

(See Chart AI.)
Entry Point: CEVBS

Calling Sequence: INVOKE ABSCAN

Routines Called: DIAG
Exit: Normal
OPERATION: This routine uses and updates a

pointer and a mode flag as it operates.

The pointer is the basic scan index
(BSSCAN) and is the virtual address of the
byte in the source statement at which scan-
ning is to start or resume. The mode flag
is the basic scan mode indicator (BSMI) and
is generally the right delimiter of the
previously scanned field. Routines that
call this routine may set both BSSCAN and
BSMI to achieve specially desired results
from the scanning process. Otherwise, this
routine uses the values that it placed in
BSSCAN and BSMI to continue scanning in an
orderly fashion.

Return is made to the caller with the
following fields set:

BSBEG Location of scanned field
BSLNTH Length of scanned field

BSTYPE Type of scanned field

Type Hex value
Blank 00
Term 01
Delimiter only 02
Character-string oy
Attribute I ocC
Attribute S 0D
Attribute T 0E
Attribute L OF
i 0.
Sequence symbol 11
Variable symbol 12
Location counter 13
Self-defining term
Decimal 28
Hexadecimal 29
Binary 2A
Character 2B
Attribute K 4c
Attribute N 4D

BSMI Delimiter of scanned field

Delimiter Hex Value
Blank 00
' 02
) 04
{ 06
= 10
. 12
R 14
& 18
End of statement 20
Name field 40
Nonnumeric character 80
+ Fu
- Fé6
* F8
/ FA

BSERR Exrror encountered by BASCAN

Exrror Hex Value
No errors 00
Invalid character in statement 01
Name or operand field contains
invalid character 02
Field improperly delimited o4
Invalid binary self-defining
term 08
End of statement encountered
before processing completed 10
Invalid use of asterisk (*) 20
AGO/AIF -- AGO/AIF Instruction Scan (CEVGO)

This routine examines the name and
operand fields of AGO and AIF instructions
for syntactical correctness. It assumes
the caller has previously called BASCAN to
examine the name field of the instruction
being processed and that all storage areas
affected by this call are unchanged except
for BASCAN which the caller has set to the
address of the first character in the
operand field. (See Chart AJ.)

Section 5: Phase I 57

Entry Points: CEVGOl1l, CEVGO2

INVOKE AAGO
INVOKE AAIF

Calling Sequence:

Routines Called: BASCAN DLKT

DIAG EVAL
DLKM
Exit: Normal
OPERATION: The AGO entry to this routine

corresponds to a true condition in the AIF
processing.

If the name field of either instruction
contains neither blanks nor a sequence sym-
bol, a warning is given, and the name field
is ignored. The AIF processing begins by
calling EVAL in the logical mode, to deter-
mine whether the operand represents a true
or false value. If false, the remainder of
the statement is checked for syntactical
correctness, and control returns to STAN.

If a true value, the sequence symbol is
examined. Depending upon the macro level,
the symbol is looked up in either the main
dictionary or the temporary dictionary. If
it is found in a dictionary, the obtain
next source statement routine (REED) input
source switch is pushed down, and a copy
mode is established for the source state-
ment defined by the sequence symbol.

If the symbol has not yet been defined,
a bypass mode is established for STAN.
This mode causes all processing to be sup-
pressed until a statement bearing the
desired sequence symbol appears or until an
END statement or end of file occurs. MEND
will also terminate this processing if a
macro is currently being expanded.
Error Checks:

e Invalid symbol in name field.

s Sequence symbol missing in operand.

e Invalid statement format.

e Improper delimiter.

ANOP —~- ANOP Instruction Scan (CEVAN)

This routine scans the ANOP instruction
for a valid name field. It assumes the
caller has previously called BASCAN to
examine the name field of the instruction
being processed and that storage areas
affected by that call are unchanged.
Chart AK.)

(See

58

Entry Point: CEVAN

Calling Sequence: INVOKE AANOP

Routines Called: DIAG

Exit: Normal

OPERATION: The name field is checked for
the presence of a sequence symbol; a diag-
nostic is generated if one is not present.
Control is then returned to the caller.

CCW —-- CCW Instruction Scan (CEVCW)

This routine examines CCW instructions
for valid operand fields and correct for-
mat. It assumes that the caller has called
BASCAN to examine the name field of the
instruction being processed, and that all
storage areas affected by the call are
unchanged except BSSCAN, which the caller
has set to the first character in the
operand. (See Chart AK.)

Entry Point: CEVCW

Calling Sequence: INVOKE ACCW

DEFSYM EVAL
DIAG SLIT

Routines Called:

Exit: Normal

OPERATION: Upon entry, DEFSYM is called.

A test is then made to determine the mode
in which the assembly is being processed.
Batch mode causes the operand to be scanned
for the presence of literals and an exit to
the caller. If in conversational mode,
each operand field is then examined; all
must be present.

The first operand must be absolute,
null, or indeterminate, and must be deli-
mited by a comma. If the latter case is
not true, it is assumed that the remainder
of the operands are missing.

The second operand may be any type of
expression and must be delimited by a
comma. If the latter case is not true, it
is assumed that the remainder of the
operand fields are missing.

The third operand field is treated
exactly the same as the first operand.

The fourth operand field is treated 1like
the first, except that the delimiter must
be a blank.

Error Checks:

e All operands must be present.

e All operands except the last must be
delimited by a comma.

¢ The last operand must be delimited by a
blank.

e The first, third, and fourth operands

must be absolute, null, or
indeterminate.

CNQOP —-- CNOP Instruction Scan (CEVCN)

This routine examines the CNOP instruc-
tion operand field for valid expressions
and correct format. It assumes that the
caller has previously called BASCAN to
examine the name field of the instruction
being processed and that all storage areas
affected by this call are unchanged except
for BSSCAN, which the caller has set to the
address of the first character in the
operand field. (See Chart AL.)

Entry Point: CEVCHN

Calling Sequence: INVOKE, ACNOP

Routines Called: DIAG, EVAL

Exit: Normal
OPERATION: Operation is different for con-
versational and batch mode.

Conversational Mode: The name field is
checked to make sure it is blank or con-
tains a sequence symbol. If the name is
invalid, it will be ignored. The first
operand field is than examined by the
expression evaluator. Only absolute, null,
or indeterminate expressions are valid, and
the absolute value must be 0, 2, 4, or 6.
This operand field must be delimited by a
comma, which is followed by the second
operand field.

The second operand field must also be an
absolute or indeterminate value to be
valid. Allowable values for an absolute
expression are 4 or 8. This second expres-
sion must be delimited by a blank.

Allowable combinations of these absolute
values are:

(=18 N Nes]
[s N — ~
[oAN0 ~3 V]
[eoJe Qee]

r r
f ¥
L r

Batch Mode: The name field is examined,
SLIT is called, and control is returned to
the caller.

Error Checks:

s Two operand fields must be separated by
a comma.

¢ The second operand must be delimited by
a blank.

e The first operand field must be abso-
lute, null, or an indeterminate expres-
sion; if absolute it must have a value
of ¢, 2, 4, or 6.

¢ The second operand field must be inde-
terminate or absolute; if absolute, it
must have a value of 4 or 8.

e Valid combinations of absolute first
and second operand fields are:

0,4 2,8

U 4,8

«8 6,8

oo

e The name field must be blank or contain
a seqguence symbol.

CXD =- CXD Instruction Scan (CEVCX)

This routine examines the CXD instruc-
tion and validates the name field, if any
is specified. It assumes that the caller
has previously called BASCAEN to examine the
name field of the instruction being pro-
cessed, and that storage areas used by BAS-
CAN are unchanged. (See Chart AL.)

Entry Point: CEVCX

Calling Segquence: INVOKE ACEVCX

Routines Called: DEFSYM
Exit: Normal
OPERATION: This routine is entered from

STAN after calling BASCAN. DEFSYM is

called to build a dictionary item if neces-
sary. Upon return from DEFSYM, the current
LOF entry is completed, and a constant item

is built. Return is then made to the
caller.

SECT -- Control Section Instruction Scan
(CEVCT)

This routine checks the control section
instructions for validity. It assumes that
the caller has previously called BASCAN to
examine the name field of the instruction
being processed and that all storage areas
affected by this call are unchanged except
for BSSCAN, which the caller has set to the
address of the first character in the
operand field. (See Chart AM.)

CEVCT1 CEVCTH4
CEVCT2 CEVCTS
CEVCT3

Entry Points:

Section 5: Phase 1 59

calling Sequences: INVOKE AXXXXX

XXXXX may be: CSCOM CSDCT
CSECT CSPCT
CSTRT
Routines Called: BASCAN DLPM
DIAG EVAL
Exit: Normal
OPERATION: There is a separate entry point

for each type of control section instruc-
tion. At this point the code representing
the specific type of instruction is set,
and pointers to the first control section
dictionary item and first PSECT dictionary
item are set, when appropriate. The name
field has been collected by BASCAN.

Unnamed PSECTs and DSECTs are considered
errors; unnamed CSECTs and COMs are valid.
The name field symbol is looked up in the
main dictionary; a look-up for a name of
blanks or binary zeros will occur for
unnamed COMs and CSECTs, respectively. If
the symbol has not been previously defined,
dictionary and GSM entries are created, and
the second part of the routine begins. If
an entry for the symbol was found, the type
of dictionary item and the type of current
statement are compared. If the two are
equivalent, a GSM entry is created, and the
routine continues.

If the current instruction is macro
generated, the control sections are reor-
dered, if necessary. If the symbols do not
designate the same control section, there
is either a duplicate symbol or incompat-
ible definition of control sections. 1In
the first case, the routine is merely
halted and control returned to the caller.
In the latter case, an "incompatible con-
trol sections™ diagnostic is issued at this
point. The label is set to blanks, and, if
the instruction is not a PSECT or DSECT
(unnamed PSECTs or DSECTs are errors), the
dictionary will be searched again. Normal
processing follows. If this label is
determined to be conflicting, an exit from
the routine is made. Each valid control
section name is compared with the program
module name. Duplication results in a
warning messade to the programmer. Also,
each control section name is checked to
make sure certain symbol conventions are
not violated.

If the instruction is a START, an ORG
statement is generated. The START operand
is evaluated as if it were that of an ORG
instruction, after which control is
returned to the caller. For other instruc-
tions, BASCAN is called to inspect the
operand for valid fields. The operand
fields, if specified, are attributes which
are PUBLIC, READONLY, VARIABLE, PRVLGD, or
SYSTEM. The dictionary item is updated
with the control section type and any valid

60

attributes. The operand fields are to be
delimited by a comma or blank.

The label for a blank, unnamed CSECT is
carried as two full words of binary zero --
X*0000000000000000'., The label for a
blank, unnamed COM is carried as two full
words of blanks -- X'4040404040404040°".
Exror Checks:

e The operand field is not delimited by
comma or blank.

e Unnamed DSECT.
¢ Unnamed PSECT.
s puplicate symbols.

e Incompatible control section
statements.

e Attribute other than PUBLIC, READONLY,
VARIABLE, PRVLGD, or SYSTEM.

e START not the first control section
statement.

e More than five attributes.

¢ The name field must contain blanks or a
valid symbol.

e Control section name may not duplicate
module name.

e Control section name must not violate
symbol conventions.

COPY —-- COPY Instruction Processor (CEVCY)

This routine checks the validity of the
COPY operand, and if required, insures the
element is retrieved from the COPY library.
(See Chart AN.)

Entry Point: CEVCY

Calling Sequence: INVOKE ACOPY

Routines Called:

s Internal - DIAG
s External -

CEVMLA Find element in library

CEVMLB Retrieve lines from library
Exit: Normal
OPERATION: This module is called by the
statement analyzer or macro reference pro-
cessor when the statement to be processed
is a COPY instruction. The contents of the
operand field are collected; the desired

element is then retrieved from the library
and copied into working storage. A diag-
nostic is given if the element is absent
from the library. The source statements
are chained together with the standard
source statement control bytes. The input
switch of the REED routine is then pushed
down and set to retrieve forthcoming state-
ments from the copied stack.

Exrror Checks:
e Invalid or missing operand.
s Missing library element.

s« Nested COPY statements.

DC/DS -- DC/DS Instruction Scan (CEVDC)

This routine is called by the statement
analyzer (STAN) when the statement to be
processed is a DC, DS, or DXD instruction.
The routine calls upon the constant scan
(CSCAN) to analyze the constant and to pre-
pare a value for it. The resulting con-
stant item is then associated with the LOF
entry for the statement, and the definition
of any name defined by the constant is com-
pleted. (See Chart AOC.)

This routine assumes that the caller has
previously called BASCAN to examine the
name field of the instruction and that all
storage areas affected by that call are
unchanged except BSSCAN, which the caller
has set to the address of the first
character in the operand field.

Entry Points: CEVDCi, CEVDCZ, CEVXD

INVOKE ADC
INVOKE ADS

Calling Sequence:

Routines Called: CSCAN, DEFSYM, DIAG
Exit: Normal
OPERATION: This routine calls DEFSYM to

define any symbol that may appear in the
name field of the statement. If the
instruction is a DXD, it is marked as such
before calling DEFSYM. A diagnostic is
issued if the DXD instruction being pro-
cessed is missing a name. CSCAN is called
to analyze the operand and to prepare a
constant value item. The routine asso-
ciates the constant item with the current
IOF entry and completes the dictionary
entry for the name defined by the constant,
if any. A DXD instruction will cause an
entry to be made on the external dictionary
chain. If the constant contains multiple
operands, a series of calls is made to
CSCAN, and a specially flagged LOF entry is
constructed for each of the multiple
operands.

EJECT -- EJECT Instruction Scan (CEVEJ)

This routine checks the EJECT instruc-
tion for correct format. It assumes that
the caller has previously called BASCAN to
examine the name field of the instruction
and that the storage areas associated with
that call are unchanged. (See Chart AP.)

Entry Point: CEVEJ

Calling Sequence: INVOKE AEJECT

Routines Called: DIAG
Exit: Normal
OPERATICN: The name field is checked to

see that it contains either blanks or a
sequence symbol. If so, control is
returned to the caller. If not, a diag-
nostic is given and control is returned to
the caller.

END -~ END Instruction Scan (CEVND)

This routine checks the END instruction
for correct formatting and valid operation
fields. (See Chart AP.)

Entry Point: CEVND

calling Sequence: INVOKE AEND

Routines Called: DIAG, EVAL
Exit: HNeormal
OPERATION: If the assembly is in batch

mode, the name field is checked, the END
indicator set, and control returned to the
caller. In conversational mode, the name
field is checked for blanks or a sequence
symbol, and, if in error, is ignored. The
operand field is then examined by EVAL to
make sure the value of the expression is
other than absolute, literal, or error.
The macro level indicator is checked to
make sure the statement did not occur
within a macro. After the end indicator is
set, control is returned to the caller.

Error Checks:

e An error occurs if the operand field
has an absolute or error value, or is a
literal.

e If the macro level indicator is greater
than zero, the statement has occurred
within a macro which is an error.

e The name field should be blank, or con-
tain a sequence symbol.

e The single operand should be delimited
by a blank.

Section 5: Phase I 61

ENTRY ~-- ENTRY Instruction Scan (CEVEY)

This routine scans the ENTRY instruction
for correct format and valid operation
fields. It assumes that the caller has
called BASCAN to examine the name field of
the instruction, and that all storage areas
affected by that call are unchanged except
BSSCAN, which the caller has set to the
address of the first character in the
operand field. (See Chart AQ.)

Entry Point: CEVEY

Calling Sequence: INVOKE AENTRY

Routines Called: BASCAN, DIAG

Exit: Normal
OPERATION: A GSM entry is constructed for

the statement, and the name field is
checked for blanks or a sequence symbol.

If the name field is found to be invalid,
it is ignored. BASCAN is called to collect
and examine each operand field. It is
expected that there is at least one operand
field, and each field is delimited by eith-
er a comma Or a blank. Each entry is then
checked to determine whether or not it vio-
lates any symbol conventions. These con-
ventions are a function of the attributes
of the control section in which the entry
occurs.

Error Checks:

* At least one operand is expected to be
present.

¢ Entry point must conform to certain
symbol conventions.

e Fields must be delimited by either a
comma or blank.

¢ Name field should be blank or contain a
sequence symbol.

EQU -- EQU Instruction Scan (CEVQU)

This routine examines the EQU instruc-
tion for syntactical correctness. It
assumes that the caller has previously
called BASCAN to examine the name field of
the instruction and that all storage areas
affected by that call are unchanged except
BSSCAN, which the caller has set to the
address of the first character in the
operand field. (See Chart AQ.)

Entry Point: CEVQU

Calling Sequence: INVOKE AEQU

DIAG DLPM
DLKM EVAL

Routines Called:

62

Exit: Normal
OPERATION: If the name field is missing,

the LOF entry is made commentary and exit
is made to the caller. Otherwise, EVAL is
called to process the three possible
operand fields for validity. Absolute or
complex dictionary items are made for the
name field symbol when the operand is
represented by an absolute or complex
expression. The length and type operands
are checked for validity. If an error is
detected, a diagnostic is issued and the
length and type values are determined as if
they were defaulted. If the expression in
the operand is simply relocatable or inde-
terminate, a transitive item is constructed
for the symbol in the name field, and the
LOF entry is flagged for attention during
Phase IIB.

Exrror Checks:
e Expression value invalid for field.
¢ Missing operand field.
¢ Missing name field.
® Invalid expression type.
e Duplicate symbol in name field.
* Invalid name field.
* Field improperly delimited.
e Invalid operand field.

EXTRN -- EXTRN Instruction Operand Scan
{CEVXN)

This routine examines the EXTRN instruc-
tion operand for valid operand fields and
correct formatting. It assumes that the
caller has previously called BASCAN to
examine the name field of the instruction
and that all storage areas affected by that
call are unchanged except BSSCAN, which the
caller has set to the address of the first

character in the operand field. (See Chart
AR.)

Entry Point: CEVXN

Calling Sequence: INVOKE AEXTRN

Routines Called: BASCAN, DIAG, DLPM

Exit: Normal

OPERATION: The name field is examined for

blanks or a sequence symbol. If the name
field is invalid, a diagnostic is issued,
the name is ignored, and processing con-
tinues. BASCAN is called to examine the
operand. If there is no operand, a warning

diagnostic is generated. Finding a symbol
results in calling DLPM. If the symbol has
been previously defined, an error has
occurred; the programmer is warned that the
symbol will not be treated as external.
Otherwise, a dictionary item is created.

In either event, control is then returned
to the caller.

Error Checks:
e The operand is blank.
e There is no symbol following a comma.
*« The symbol has been previously defined.

e A symbol is delimited by something
other than a comma or blank.

¢ The name field should be blank or con-

tain a sequence symbol.

GBLX/LCLx —-- Global/Local Symbol
Instruction Scan (CEVGL)

This routine scans Global and Lecal
instruction operands and checks the operand
fields for valid expressions and correct
format. It assumes that the caller has
previously called BASCAN to examine the
name field of the instruction and that all
storage areas affected by that call are
unchanged except BSSCAN, which the caller
has set to the address of the first
character in the operand field. (See Chart

AS.)

Entry Points: CEVGL1 CEVGL5
CEVGL2 CEVGL6
CEVGL3 CEVGL7?7
CEVGL4

calling Sequences: INVOKE AXXXX

xxxx may have the following values:

GBLA ICLA
GBL.LB LCLB
GBLC LCLC

Routines Called: BASCAN DLPM
DIAG DPUT
DLKT EVAL
Exit: Normal
OPERATION: This will vary depending on

which phase is calling the routine.

Phase I: Each type of symbol instruction
has its own entry point. Here the dic-
tionary item type, code, and length are
stored.

BASCAN is called to collect the first
operand field; only variable symbols are

allowed as operand fields. If the macro
level indicator is greater than zero, the
temporary dictionary is searched for the
variable symbol. A find is considered an
error because a symbol can be defined only
once. If the symbol is not found, and it
is a local symbol, it is inserted into the
temporary dictionary. If the symbol was
not found in the temporary dictionary, and
it is a global symbol, a search of the main
dictionary is initiated. No find causes an
item to be inserted in both the main and
temporary dictionaries; a valid find
results in an insertion in the temporary
dictionary. The processing advances to the
point where the delimiter is checked.

If the macro level was zero, the main
dictionary is searched for the symbol. A
find indicates an error; no find results in
an item being inserted in the main dic-
tionary. The delimiter of the operand
field is checked.

If the delimiter of the variable symbol
is a left parenthesis, there is a subscript
to be evaluated. The subscript must be an
absolute value less than or equal to 255;
the valid value is inserted into the dic-
tionary item. Anything greater than 255 is
set to 255, and a diagnostic is generated.
The delimiter of the subscript is checked
to be a right parenthesis. The next
character must be a comma or a blank. A
comma causes the processing to return to
the point where basic scan is called. A
blank causes exit to the caller. This
cycle is continued until a blank delimiter
is encountered or error condition prevents
further processing.

If the operation is global, and it is
not Phase IIA, a GSM entry is created.

Phase IIA: During Phase IIA, this module
performs two functions. The first is to
process those global and local symbols
occurring in macro expansions. These are
processed as in Phase I, except no GSM
entry is made for global symbols. The
second Phase IIA function this module per-
forms is to reprocess those global instruc-
tions seen in Phase I. The result of this
reprocessing is to reset the symbols to
their initial values so the correct values
will be associated with the symbols during
macro expansions.

Error Checks:

e Operand field must contain variable
symbol.

e Only one definition per symbol allowed
in one dictionary.

e Delimiter of variable symbol must be

left parenthesis, comma, or blank.

Section 5: Phase I 63

* Subscript expression must be absolute.

* Absolute value of subscript must be
less than or equal to 255.

¢ Subscript must be delimited by right
parenthesis.

s Name field should be blank.

ICTL -- ICTL Instruction Scan (CEVIC)

This routine scans ICTL instruction
operand for valid operand fields with
correct formatting. It assumes that the
caller has previously called BASCAN to scan
the name field of this instruction and that
all storage areas affected by that call are
unchanged except for BSSCAN, which the
caller has set to the address of the first
character in the operand. (See Chart AT.)

Entry Point: CEVIC

Calling Sequence: INVOKE AICTL

Routines Called: DIAG, EVAL
Exit: Normal
OPERATION: To be valid, an ICTL must be

the first source program statement. An
invalid occurrence of an ICTL causes the
statement to be made commentary.

To be valid, the name field should be
blank or contain a seguence symbol. If
this is not the case, the name is ignored.

The first operand field, indicating the
begin column, must be present. It is
checked to see that it is greater than zero
and less than or equal to 40. If the abso-
lute value is valid, it is stored in BCOL.
An error in the begin column causes the
statement to be ignored.

The second operand field is evaluated to
determine whether it is present. Its
absence causes the end column to be set to
its assumed value of 71. If the operand is
present, it must represent an absolute
value greater than 40 and less than or
equal to 80; otherwise, it is considered an
error, and the end column is assumed to be
71. If the value is 80, it is assumed that
there will be no continuation cards.

The third operand field is examined. If
the field contains an operand, and the end
column is 80, an error occurs and continua-
tion cards are not allowed. In event of
any other type of error in the field, the
continue column is assumed to be 16.

Should this conflict with the begin column,
continuation cards will be ignored. A
blank field or a value of 80 for the end

64

column indicates that continuation cards
are not allowed.

If the field contains an absolute expre-
ssion, the value must be greater than that
designated as the begin column, and must be
greater than 1 and less than or equal to
40.

Each operand field is checked to be
delimited by either a comma or blank. Only
one ICTL statement is honored during one
assembly, and it must precede all other
source statements.

Error Checks:

¢ There can be only one ICTL statement
per assembly.

* The first operand, which designates
begin column, must be present.

e All operands, if present, must be in
form of absolute walues.

* The begin column must be greater than 0
and less than or equal to 40.

® The end column must ke greater than 40
and less than or equal to 80.

e If the end column is 80, there can be
no continue column designation.

® The continue column must be greater
than 1, greater than the begin column,
and less than or equal to 40.

* Each field must be delimited by a comma
or blank.

¢ The name field should be blank or con-
tain a sequence symbol.

ISEQ -- ISEQ Instruction Scan (CEVIQ)

This routine examines the ISEQ instruc-
tion operand fields for valid expressions
and correct format. It assumes that the
caller has previously called BASCAN to scan
the name field of this instruction and that
all storage areas affected by that call are
unchanged except for BSSCAN, which the
caller has set to the address of the first
character in the operand. (See Chart AU.)

Entry Point: CEVIQ

Calling Sequence: INVOKE AISEQ

Routines Called: DIAG, EVAL

Normal
Exrror - Model statement is ISEQ or
ICTL, or assembler instruc-

Exit:

tion other than END used as
macro.

OPERATION: If BASCAN found an error in the
ISEQ name field, the name field is ignored.
If BASCAN did not f£ind an error, the name
field is checked for a blank or a seguence
symbol; anything else results in a diag-
nostic message, and processing continues.

The first operand field is examined by
EVAL. A blank operand indicates that
sequence checking is to terminate; to ind-
icate this, the areas indicating the left
and right column boundaries for the
sequence check are set to zero. An abso-
lute expression designates the left column
(or begin column) of sequencing. This
value is compared with the end column. To
be valid, the value must be greater than
the end column value +1, or less than the
begin column and greater than zero. The
delimiter is checked to make sure it is a
comma .

The second operand representing the
right boundary of the columns to be
sequence checked is evaluated. It must be
an absolute value equal to or greater than
the left column. If the left column of the
sequence area is less than the begin column
value, the right column of the sequence
area must also be less than the begin
column value. If the left column of the
sequence area is greater than the end
column, the right column value may not
exceed 80. Its delimiter is checked to
make sure it is a blank.

Any error in the statement results in a
cancellation of the sequence check; LCOL
and RCOL are set to zero, and control
returned to the caller.

Error Checks:

¢ Operand fields should be blank or
absolute.

s Operand fields should be separated by a
comma.

e The value of the left column should be
at least 2 greater than ECOL, or less
than BCOL and greater than zero.

¢ The second operand is delimited by a
blank.

¢ The right column should be equal to or
greater than the left column and less
than or equal to 80, or 1 or greater
and less than BCOL.

» The name field should be blank or con-
tain a sequence symbol.

LTORG -- LTORG Instruction Scan (CEVLG)

This routine checks the LTORG instruc-
tion for correct format. It assumes that
the caller has previously called BASCAN to
scan the name field of this instruction and
that the storage areas affected by that
call except BSSCAN are unchanged. (See
Chart AU.)

Entry Point: CEVLG

Calling Sequence: INVOKE ALTORG

Routines Called: DEFSYM
Exit: Normal
OPERATION: DEFSYM is called to construct a

relocatable value item from the symbol, if
one is designated in the name field. A GSM
entry is created, and control is returned
to the caller.

MACRO —-- MACRO Instruction Scan (CEVMC)

This routine checks the MACRO instruc-
tion for correct format. It assumes that
the caller has previously called BASCAN to
scan the name field, and that all storage
areas affected by that call except BSSCAN
are unchanged. (See Chart AV.)

Entry Point: CEVMC

Calling Sequence: INVOKE AMACRO

Routines Called: DIAG
Exit: Normal
OPERATION: The name field is checked to

make sure it is blank; if it is not, a dia-
gnostic is printed. The macro definition
switch is then set to 1, and control is
returned to the caller.

MEND/MEXIT -- MEND/MEXIT Instruction Scan
(CEVMX)

This routine examines MEND and MEXIT
instructions for correct format. It is
phase oriented, in that the MEXIT entry can
only occur during Phase IIA. The routine
either cancels macro definition mode or
causes the macro expansion mechanism to
return to the previous macro level. (See
Chart AV.)

This module assumes that for a MEXIT
instruction the caller has previously
called BASCAN to examine the name field,
and that all storage parameters affected by
that call except BSSCAN are unchanged.

Section 5: Phase I 65

Entry Points: CEVMX1l, CEVMX2

Calling Sequence: INVOKE AMEND

INVOKE AMEXIT

Routines Called: BASCAN, DIAG

Exits: Normal - CEVST1
Error - Original exit
OPERATION: Each instruction scan has a

separate operation.

MEND: In Phase I the name field is ana-
lyzed; invalid entries are diagnosed and
ignored. This check is not made during
Phase IIA. If the macro definition mode is
set (MDS switch = 2), it is canceled (MDS
switch is set to zero), and an immediate
return is made. This condition prevails
during the processing of macro definitions
in either Phase I or IIA. If the macro
definition mode is not set, MEND executes
identically with MEXIT.

MEXIT: The name field of the instruction
is examined; invalid entries are diagnosed
and ignored. If the macro level is zero,
MEXIT has occurred out of context in the
source program. A diagnostic is given, and
the statement is ignored. If the macro
level is greater than zero, the space occu-
pied by the current macro level dictionary
is reclaimed (by resetting AWORK1l address
pointer). The macro level (MLVL) is
reduced by one, and the location of the LOF
entry for the statement at which processing
stopped on the preceding macro level is
reinstated in the REED input switch. If
the macro level has been reduced to zero,
the REED input switch is popped up to its
previous mode.

Error Checks:
¢ Name field improperly delimited.
®* Name field contains invalid symbol.

s MEXIT instruction invalid outside
macro.

MNOTE —- MNOTE Instruction Scan (CEVMN)

This routine scans the operand of MNOTE
instructions, checking for valid operands
and correct format. It assumes that the
caller has previously called BASCAN to
examine the name field of this instruction,
and that all storage areas affected by that
call are unchanged except BSSCAN, which has
been set to the address of the first
character in the operand. (See Chart AW.)

66

Entry Point: CEVMN

Calling Sequence: INVOKE AMNOTE

Routines Called: BASCAN, DIAG, EVAL

Exit: Normal
OPERATION: The first operand is examined
by EVAL. Null, absolute, or indeterminate

expressions, as well as an *, are consi-
dered valid. The delimiter is checked to
make sure that it is a comma, and that it
is followed by a character string. (If the
operand contains only a character string,
the MNOTE is treated as diagnostic with
severity code of zero.) If the first
operand was an *, the character string is
treated as a comment and is limited to a
length of 226 characters. Otherwise, the
character string is considered a diagnostic
message and causes a special call to the
diagnostic processor. In this case, a
maximum of 100 characters is allowed.
trol is returned to the caller.

Con-

Exxor Checks:

® First operand, if present, other than
absolute, null, or asterisk.

e First operand, if present, not deli-
mited by a comma.

e Something other than a blank or
sequence symbol in name field.

® Diagnostic character string greater
than 100.

¢ Comment character string greater than
226.

e If only one operand is present, it
represents something other than a
character string.

» If the first operand is present, the

second operand represents something
other than a character string.

ORG -- ORG Instruction Scan (CEVRG)

This module evaluates the operand of ORG
instructions and determines whether it is
valid and the format correct. It assumes
that the caller has previously called BAS-
CAN to scan the name field of this instruc-
tion, and that all storage areas affected
by that call are unchanged except BSSCAN,
which has been set to the address of the
first character in the operand. (See Chart
BA.)

Entry Point: CEVRG

Calling Sequence: INVOKE AORG

Routines Called: DIAG, EVAL

Exit: Normal

OPERATION: The name field is checked for a
blank or a sequence symbol. If the name
field is not valid, a diagnostic message is
issued, the name is ignored, and processing
continues. A test is then made to deter-
mine the mode in which the assembly is
being processed; batch mode results in
immediate exit to the caller.

In conversational mode, EVAL is called
to examine the operand. Absolute, null, or
relocatable values are valid. The delimit-
er is checked to verify that it is a blank,
and control is returned to the caller.

Error Checks:

« Expression must be absolute and nonne-
gative, null, or indeterminate.

¢« The field must be delimited by a blank.
o The name field should be blank or con-

tain a sequence symbol.

PRINT -- PRINT Instruction Operand Scan
(CEVPR)

This module examines the operand of
PRINT instructions for correct formatting
and valid contents. It assumes that the
caller has previously called BASCAN to
scanthe name field of this instruction and
that all storage areas affected by that
call are unchanged except BSSCAN, which has
been set to the address of the first
character in the operand. (See Chart BA.)

Entry Point: CEVPR

Calling Sequence: INVOKE APRINT

Routines Called: BASCAN, DIAG
Exit: Normal
OPERATION: If BASCAN found an error in the

PRINT name field, the name field is
ignored. If BASCAN did not find an error,
the name field is checked for a blank or a
sequence symbol; anything else results in a
diagnostic message, and processing
continues.

A GSM entry is created for the PRINT
statement. The operand field is examined
to see that no more than three of the fol-
lowing options appear, and that none are
contradictory or repetitive: ON, OFF, GEN,
NOGEN, FULLGEN, DATA, NODATA. An option
must be delimited by a blank or comma.

codes for valid options are entered in the
current logical order file entry.

Exrror Checks:
e A blank operand.
¢ A comma followed by a blank.

¢ An option not delimited by a comma or
blank.

e Something other than ON, OFF, GEN,
NOGEN, FULLGEN, DATA, or NODATA speci-
fied as an operand field.

e More than three options.

¢ Options which contradict or repeat one
another.

e The name field should be blank or con-
tain a sequence symbol.

PUNCH -- PUNCH Instruction Scan (CEVPH)

This routine issues a warning when a
PUNCH instruction is encountered.

Entry Point: CEVPH

Calling Sequence: INVOKE APUNCH

Routines Called: DIAG
Exit: HNormal
OPERATION: The PUNCH instruction is

allowed to maintain compatibility with 0S/

360. The LOF entry for the PUNCH instruc-

tion is changed so it will result only in a
printed line in the listing. A diagnostic

is printed to warn the user:

WARNING: INSTRUCTION PRODUCES LISTING
ONLY.
REPRO -- REPRO Instruction Scan (CEVRE)

This routine issues a warning when a
REPRO instruction is encountered.

Entry Point: CEVRE

Calling Sequence: INVOKE AREPRO

Routines Called: DIAG
Exit: Normal
OPERATION: The REPRO instruction is

allowed to maintain compatibility with 0S/
360. The LOF entry for the REPRO instruc-
tion is changed by another module so it

will result only in a printed line in the

Section 5: Phase I 67

listing.
the user:

A diagnostic is printed to warn

WARNING: INSTRUCTION PRODUCES LISTING
ONLY.
SETX -- SET Instruction Scan (CEVSE)

This routine processes SETA, SETB, and
SETC instructions. It assumes that the
caller has previously called BASCAN to scan
the name field of this instruction and that
all storage areas affected by that call are
unchanged except BSSCAN, which has been set
to the address of the first character in
the operand. (See Chart BB.)

Entry Points: CEVSE1l, CEVSE2, CEVSE3
Calling Sequence: INVOKE SETx

X may be: A, B, C

Routines Called: BASCAN, DIAG, EVAL

Exit: Normal
OPERATION: This routine is called when the

statement to be processed is a SETA, SETB,
or SETC instruction. The symbol in the
name field is checked for validity, and set
to the value of the expression which
appears in the operand. Repetitive defini-
tion of the same symbol is permitted. The
permanent dictionary is used when the macro
level is zero; the current macro level dic-
tionary is used when the macro level
exceeds zero.

SETA Instruction: If the name field is
unsubscripted, EVAL is called to process
the operand. Only absolute arithmetic
values are acceptable. The value is placed
in the appropriate dictionary item. If the
name field is subscripted, the subscript is
checked for validity, and a subscript
trailer is added to the dictionary item, if
required. The operand is then evaluated,
checked for validity, and inserted into the
subscript trailer. The value is also
inserted in the logical order file entry.

SETB Instruction: If the name field is
unsubscripted, EVAL is called in the logic-
al expression mode to process the operand.
The results must be logically true or false
to be valid. The value bit in the dic-
tionary item is set or reset as required.
If the name field is subscripted, the sub-
script is checked for validity. EVAL is
called to evaluate the logical expression,
and the bit in the dictionary item which
represents the subscripted value is set or
reset,

SETC Instruction: If the name field is
unsubscripted, BASCAN is called to process
the operand. Only character strings or the

68

type attributes are acceptable. The
character string must be eight characters
or fewer. If valid, the value is placed in
the dictionary item. When the name field
is subscripted, the value is checked for
validity, and a subscript trailer is added
to the dictionary item, if required. The
operand is then scanned, checked for vali-
dity, and inserted into the subscript
trailer. The value and length of the sym—
bol are also inserted in the logical order
file entry.

Error Checks:
® An invalid name field.
* A missing subscript.
* An invalid subscript.
®* A character string too long.
®* An invalid expression type.
* An invalid value for the field.
e An invalid operand.
* Field improperly delimited.
¢ Statement incompatible with previous

definition.

SPACE -- SPACE Instruction Scan (CEVCE)

This routine examines SPACE instructions
for syntactical correctioness. It assumes
that the callier has previously called BAS-
CAN to scan the name field of this instruc-
tion and that all storage areas affected by
that call are unchanged except BSSCAN,
which has been set to the address of the
first character in the operand field. (See
Chart BC.)

Entry Point: CEVCE

Calling Sequence: INVOKE ASPACE

Routine Called: DIAG, EVAL

Exit: Normal

OPERATION: The name field is checked for
the presence of blanks or a sequence sym-
bol. If the name is determined to be inva-
1id, it is ignored, and normal processing
continues. In conversational mode, EVAL is
then called to examine the operand. Only
absolute, null, and indeterminate expre-
ssions are considered valid; absolute and
indeterminate expressions must be delimited
by a blank. A null expression may consist
of either a comma or blank. In batch mode,
control is returned to the caller after the
name field check.

Error Checks:

s The value of the single field must be
null, absolute, or indeterminate.

¢ The single operand field is delimited
by a blank.

« The name field is blank or contains a
sequence symbol.

TITLE -- TITLE Instruction Scan (CEVTI)

This routine checks the TITLE instruc-
tion for correct format. It assumes that
the caller has previously called BASCAN to
examine the name field of this instruction
and that all storage areas affected by that
call are unchanged except BSSCAN, which has
been set to the address of the first
character in the operand. (See Chart BC.)

Entry Point: CEVTI

calling Sequence: INVOKE ATITLE

RrRoutines Called: BASCAN, DIAG

Exit: Normal

OPERATION: The name field is checked for
up to four alphabetic or numeric charac-—
ters. If found, and this is the first
TITLE instruction, the field is saved for
later use in card identification. The
operand field is checked for a character
string with a maximum length of 100 charac-
ters. If a character string is found, it
is saved for later use in printout of
assembly listing. If the character string
length exceeds 100 characters, only the
first 100 characters are retained for later
use. Control is then returned to the
caller.

Error Checks:

e The name field contains an invalid
symbol.

s The name field of the second and fol-
lowing TITLE instructions is not blank.

¢ The name field of TITLE exceeds four
characters.

e An invalid operand field.

e A truncated value (when operand exceeds
100 characters in length).

USE/DROP -- USING and DROP Instructions
Scan (CEVUD)

This routine examines DROP and USING
instructions for valid operand fields and

correct formatting. It assumes that the
caller has previously called BASCAN to scan
the name field of this instruction and that
all storage areas affected by that call are
unchanged except BSSCAN, which has been set
to the address of the first character in
the operand field. (See Chart BD.)

Entry Points: CEVUD1, CEVUD2

calling Sequence: INVOKE AUSING or ADROP

Routines Called: DIAG, EVAL

Exit: Normal

OPERATION: The name field of the statement
must be blank or must contain a sequence
symbol. In the event of an invalid name
field, a warning is issued and the name is
ignored. In batch mode a GSM entry is made
and control is returned to the caller.
Otherwise, the instruction operand is
examined. For USING instructions the first
operand field is evaluated to see that it
is valid; it must be relocatable, absolute,
complex, or indeterminate.

The register designations are examined
to see that they are absolute or indeter-
minate expressions. If general register 0
is specified in a USING statement, its
treatment will be the same as for any other
general register. The user can thus con-
veniently address page 0 of virtual storage
by specifying general register 0 as a base
register. However, an element of relocata-
bility is lost. BAny area covered by GR 0
is effectively the same as specifying no
base register at all, and hence cannot be
relocated at execution time. For DROP
statements the validity of the register
designations is checked. If no operands
are present, all registers which have been
designated as base registers will be
dropped. Registers which are specified
must be specified by absolute or indeter-
minate expressions. The delimiters are
checked and must be a comma or blank. A
count is kept to make sure that only 16
registers are listed. GSM entries are
created for either instruction, and control
is returned to the caller.

Exrror Checks:
e At least one base register designated.

e The number of register designations
less than or equal to 16.

e The expression representing the first
operand of USING statement absolute,
indeterminate, complex, or relocatable.

e The expression designating the register
absolute or indeterminate.

Section 5: Phase I 69

¢ The operand fields delimited by a comma
or blank.

¢ The name field blank or contains a
sequence symbol.

® A given register not designated more
than once in any single instruction.

® The absolute value designating a
register less than or equal to 15.

MACREF —-- Macro Reference Processor (CEVRF)

This routine is called when analysis of
the current operation mnemonic indicates a
macro instruction statement. It is
responsible for indicating the presence of
the macro instruction in Phase I and for
ensuring the presence of the macro defini-
tion in Phase IIA. (See Chart BE.)

Entry Points:

Calling Sequences:

CEVRF, CEVRF1

INVOKE AMCREF

or
L R2,RF011
BR R2

Routines called:

® Internal - DIAG MACLKT
DLKM PARAMAC

VMGET

® External - CEVMLA, CEVMLB

Exit: Normal
OPERATION: Macro instructions are directed

to this routine. To provide the type
attribute M, this routine first determines
whether there was a symbol in the name
field of the source line. If 50, a transi-
tive item is constructed, if one does not
already exist, and this item is flagged.
In Phase I, an entry for the GSM chain is
constructed to cause the expansion of the
macro instruction during Phase IIA. 1In
Phase IIA, the current statement is a
nested macro instruction and is to be
expanded on the spot.

If the macro definition does not cur-
rently exist in assembler working storage,
I/0 activity is initiated to read the
source lines into working storage and chain
the lines together. The input source mode
of REED is then set to the macro library
mode, and REED is directed to the prototype
line of the definition. The macro defini-
tion switch is set to 1, indicating a
definition; control is transferred to the
input branch of STAN with an open transfer
(not a subroutine linkage); and an indica-
tor is set to denote MACREF mode.

70

Subsequent statements are procured from
library lines previously stored and are
interpreted as a macro definition. The
occurrence of the MEND statement when
MACREF mode is set re-directs control to
this module at the point of departure.

PARAMAC is called to perform initializa-
tion of the macro level dictionary and set
the input socurce mode of REED to macro
definition mode so that, upon return to
STAN, subsequent statements will be pro-
cured from the macro definition currently
referenced.

If the macro definition exists in
storage, the process of obtaining the
definition from the library is bypassed,
and PARAMAC is called directly.

Erxror Checks:
* Duplicate symbol.
¢ Error in macro library retrieval.
e Error in library macro definition.

MACDEF -- Macro Definition Processor
(CEVDF)

This routine controls the processing of
macro definitions. It monitors statements
appearing between MACRO and MEND state-
ments, and is responsible for entering the
name of the macro in the macro name dic-
tionary. (See Chart BF.)

Entry Point:

Calling Sequence:

CEVDF

INVOKE AMCDEF
“ea (error return)
cas (normal return)

Routines Called: CATOP MACLKT

copY MACPUT
DIAG SUBOP
GETOP
Exit: Normal
Error - ISEQ or ICTL within a macro
definition or macro rede-
fines an assembler
mnemonic.
OPERATION: This routine is called by STAN

when it is known that a macro definition is
being input (MDS is not zero). At this
point it is known also that the operation
code of the current line is neither MEND
nor MACRO.

If MDS equals 1, this indicates the pre-
vious source line was a MACRO statement and
therefore the current line is the prototype
statement. A macro name item is con-
structed in the main dictionary using the

contents of the operation code field {maxi-
mum eight characters) as the key. In addi-
tion, the operation code is looked up in
the operation code table and, if a match is
found, and the code is a machine operation,
a diagnostic is issued warning that a
machine mnemonic code has been redefined by
a macro definition. The redefinition indi-
cator is turned on in the matching opera-
tion code table entry. If the redefined
operation is an assembler instruction, the
statement is diagnosed as illegal, and all
statements except END are treated as com-
mentary. The dictionary item for the macro
name is completed by inserting the location
of the LOF entry for the prototype line and
the location of the prototype line itself.
The former is used by MACREF in initializ-
ing REED to read the definition when the
macro is expanded. The latter is used by
PARAMAC to establish a temporary macro
level dictionary when the macro is
expanded.

After establishing the macro name item,
return is made to STAN. Thereafter, incom-
ing statements from STAN pass through this
module; the operation codes ISEQ, ICTL, and
END are diagnosed as illegal within a macro
definition. The LOF entry for an ISEQ or
ICTL is deleted, and an error return is
made. If the statement is END, the end
indicator (ENDIND) is set, and a normal
return is made. COPY statements cause the
COPY module to be called, which reads in
the library element and pushes down the
input source switch in REED so subsegquent
statements originate from the library.
Copied statements thus become part of the
macro definition and not part of the expan-
sion. COPY statements during expansion are
suppressed by REED in the macro definition
mode.

Error Checks:

¢ ISEQ, ICTL or END within macro
definition.

» Macro redefines an assembler
instruction.

CSCAN -- Constant Scan (CEVCS)

This routine collects and analyzes each
subfield of a data definition. It obtains
and, when necessary, converts the constant
to produce constant items for each operand
examined. The attributes of the constant
are also evaluated. {See Chart BG.)

Entry Point: CEVCS

Calling Sequence: INVOKE ACSCAN

Routines Called: -BASCAN EDEC

DIAG EVAL

Exit: Normal

Input Parameters:

BSSCAN Word pointer to location of
first character of expression

Output Parameters:

RO Beginning address of constant item;
zero if scan mode or unable to
process.

R1 Set to 1 if multiple operands;
otherwise, it is zero.

R2 Set to 1 if a location counter
reference is encountered in A, S, Y
types; otherwise, it is zero.

OPERATION: This routine is called to pro-
cess the operands of DC, DS, and DXD state-
ments, by Phase IIB to process literals,
and by the literal scan routine in EVAL to
obtain the character lencth ©i the source
text that represents the entire literal.

If the literal scan mode switch is on, a
constant item is not generated, and all
diagnostics are suppressed except those
pertaining to literals.

If the literal scan mode switch is not
on, a constant item is formed for the
operand, and, when necessary, the constant
is generated,; and its value appended to the
constant item. The length attribute is
computed for all data types. When appro-
priate, the integer and scale attributes
are also computed. In the case of multiple
constants, these attributes are those of
the first constant in the set. A DC state-
ment with a zero duplication factor is
treated as if it were a DS statement. No
values are attached for DS statements and
for address constants.

A call to this routine causes a single
operand to be processed; however, the
operand field may contain multiple
operands. If the delimiter that terminated
the operand field was a comma, the caller
is notified so that this module may be
reentered to process the remaining
operands.

Exrror Checks:
e Zero duplication factor in literal.
s Truncated value.
e Invalid hexadecimal constant.
e Invalid binary constant.
¢ Floating point characteristic out of

bounds.

Section 5: Phase I 71

e All precision lost during scaling.
e Invalid decimal constant.

e Improper operand for V-type address
constant.

e Improper operand for R-type address
constant.

e Invalid delimiter.
e Invalid type subfield.

e Value of length modifier invalid for
type of constant.

¢ Scale modifier not permitted for type
of constant.

¢ Exponent modifier not permitted for
type of constant.

e Exponent modifier out of range.
e Scale modifier out of range.

e Multiple constants not permitted for
type of constant.

e Data omitted from DC operand.
¢ Invalid operand field.
e Improper operand for Q-type address

constant.

SSCAN —-- String Substitution Scan (CEVSS)

This routine performs string substitu-
tion of variable symbols and symbolic para-
meters appearing in a source statement.
(See Chart BH.)

Entry Points: CEVSS, SSCAN2

Calling Sequence: INVOKE ADSCAN

e (error return)
“ee (normal return)
Routines Called: DIAG DLKT VMGET
DLKM EVAL
Exit: Normal
Error - Invalid parameter or sub-
string notation
OPERATION: Translate and test instructions

are used to isolate variable symbols in the
statement to be scanned. The variable sym-
bol isolated by this method is then looked
up in either the macro level dictionary or
main dictionary, whichever is pertinent.
The dictionary item for the symbol yields
either a character string or other value,
which is then substituted for the symbol in
a reconstructed version of the statement.

72

Special rules govern substitution in the
operand field of SETB and AIF instructions.
SETB symbols represent Boolean values which
will not be apparent to EVAL if replaced by
the corresponding character string value.
Accordingly, SETB symbols appearing within
quotation marks are always replaced. oOut-
side quotes, the character string is sub-
stituted only when concatenation to the
surrounding character string is indicated.
Substitution is not performed if the SETB
symbol, including subscripts, is delimited
on both the left and the right by an arith-
metic operator (+, -, /, or *), a parenthe-
sis, or a blank. The character string
value is concatenated if the SETB symbol is
delimited on either side by a character
other than those mentioned above.

In the operand field of SETC instruc-
tions, and for character values found in
logical expressions, two or more character
expressions are concatenated into a single
string when required. Substring notation
is interpreted and the selected substring
is substituted when such notation is
present.

Special processing is performed when
attribute notation is encountered. If the
count or number attributes of a symbolic
parameter or the type attribute of a sym-
bolic parameter whose argument is not a
symbol are requested, the respective
integral or character string value of the
attribute is substituted for the attribute
notation. If the argument is a symbol, the
parameter is replaced by the argument, and
the attribute notation is left intact; its
value is obtained subsequently. This dif-
ference in processing arises because N' and
K' are attributes of the symbolic parameter
itself, whereas T is an attribute of the
argument if the argument is a symbol, but
is otherwise an attribute of the parameter.

Similar treatment is alsc performed for

the substitution of system variable symbols
and their attributes.

EVAL -- Expression Evaluator (CEVEV)

This routine evaluates an arithmetic or
logical expression designated by the cal-
ling module, and returns with the value and
type of the expression. (See Chart BI.)

Entry Point: CEVEV

Calling Sequence: INVOKE AEVATL

Routines Called: BASCAN DLKT EDEC
CSCAN DLPM EHEX
DIAG EBIN PSCAN
DLKM ECHAR

Normal
Exrror - Unbalanced parentheses or
invalid parameters

Exit:

Input Parameters:

BSSCAN Word pointer to location of
first character of expression
FAL 1-byte flag with value of ¢

(arithmetical expression) or 1
(logical expression)

Output Parameters:

RO Value of the expression, if abso-
lute value; absolute part if
relocatable.

R1 Location of RLD string, if relocat-
able; otherwise, no information.
For a description of the RLD str-
ing, see "Comments,® below.

R2 Length of RLD string (in bytes) if
relocatable; otherwise, no
information.

FEX 1-byte exit flag; indicates type of
expression evaluated and set as

follows:
Hex Bit

Expression Type Value Set
Absolute Arithmetic 00
Absolute Boolean 01
Relocatable 02
Literal (373
Indeterminate o8
Exrror in Syntax 10
Null; first character

was end-of-expression

delimiter 20
Complex 40

OPERATION: Following is a description of
the operation performed for each function
of the routine.

Scanning Techniques: BASCAN is employed to
scan the expression. The normal output of
this routine is either a term followed by
an operator (delimiter)or an operator alone
(null term).

The right delimiter serves as an inter-
pretive key to the expression. In an ari-
thmetic expression, a comma or space indi-
cates the end of the expression. A left or
right parenthesis may also indicate the end
of the expression, subject to the following
conditions:

e A left parenthesis following a preced-
ing left parenthesis or operator is
considered to be algebraic. A left
parenthesis following a term is consi-
dered the end of the expression, unless

the term itself requires subscript
notation. In the latter case, appro-
priate indicators are placed in tables
internal to this routine and a recur-
sive evaluation of the expression for
the subscript is started.

e For a logical expression, an unbalanced
right parenthesis indicates the end of
the expression. Spaces serve to separ-
ate the logical and relational opera-
tors but do not delimit the expression
as a whole. The calling routine indi-
cates by setting a switch whether this
routine is to operate in the arithmetic
or logical mode.

e In the logical mode, a symbol occurring
where an operator is expected causes
this routine to test the spelling of
the symbol against that of the logical
and relational operators. If a match
is found, the symbol is treated as an
operator.

Interpretation of Terms: BASCAN returns to

this routine with a character substring
consisting of a term followed by its right
delimiter, or with a right delimiter only
(a null term). It also provides an indica-
tor to tell whether a term is present, and
if so, the type of term. This indicator is
tested for one of the following seven poss-
ible outcomes:

e There is no term (a null, or operator,
or right delimiter only): control is
transferred to the lone operator rou-
tine, which is described in a later
section.

s The term is a literal: in Phase III of
the assembler, the normal procedure is
to (1) create a hash number from the
first eight characters of text (exclud-
ing =) and inserting blanks in the
lower order bytes, if necessary, (2)
locate the literal in the dictionary,
and (3) create an RLD output list and
classify the expression as relocatable.
In earlier phases, the literal is mere-
ly scanned over, and the expression is
classified as indeterminate.

¢ The term is the location counter #*:
the location counter is relocatable, so
unless the expression contains a term
that can be paired with it, the result-
ing expression is relocatable also.
The location counter indication is
placed in an RLD string; its format is
the same as a dictionary item.

e The term is a symbol name: it may be
absolute, relocatable, undefined, or
complex. The normal procedure is to
create a hash number from the symbol
name, look it up in the dictionary, and

Section 5: Phase I 73

get the value from the value field in
the dictionary. The exceptions to this
procedure are: (1) The symbol name is
not in the dictionary -- the term is
indeterminate. A code will be set and
an exit to the calling routine will be
made. (2) The symbol was found, but
the value was not there, meaning that
the term is relocatable. The term will
be put into the RLD string. If the
associated operator is not ADD or SUB-
TRACT, there is an error, and an error
code will be set and control will be
returned to the calling routine. (3)
The term is an external reference; an
indicator code will be set and an exit
will be made.

Cross-reference items are prepared by a
subordinate routine for each symbol
encountered when the cross-reference
mode indicator is set.

®* The term is an attribute of a symbol:
the normal procedure is to create a
hash number from the symbol name, find
the symbol name in the dictionary, get
the specified attribute from the attri-
bute field in the dictionary, and use
this as the value of the term. The
exceptional procedure occurs when the
symbol name is not in the dictionary;
an error code will be set, and an exit
will be made.

* The term is self-defining: an indica-
tor from BASCAN indicates the type of
self-defining term. The term will be
evaluated.

e The term is absolute Boolean; a diag~
nostic will be issued and an exit will
be made.

Interpretation of Parentheses: A left
parenthesis as a right delimiter has two
interpretations:

¢ It is the end of the expression and
introduces a subfield.

* The term is a subscripted variable sSym—
bol, and the item being introduced by
the parenthesis is an expression that
will identify the correct value from
the group of values associated with
this term.

When the term is found in the dic-
tionary, the maximum subscript value
field can be tested to determine which
interpretation is correct. If the
tfield is zero, there is no subscript;
if it is not zero, a subscript must be
present. If the term is nonsub-
scripted, the left parenthesis ter-
minates the current expression. Eva-
luation of the expression is completed

74

and control is returned to the calling
routine. If the parenthesis level
counter indicates that the expression
is not finished, an error message is
given.

If the term is subscripted, a flaqg is
placed in the waiting stack (see "Order
of Scan"), while the expression inside
the parenthesis is evaluated. If one
of the terms inside the parentheses
also has a subscript, another flag is
placed in the waiting stack and that
expression is evaluated. Flagging and
stacking of subscript expressions in
the stack can be carried on indefinite-
ly. When a subscript expression is
finally evaluated, the proper value for
the term can be found from the dic-
tionary. At this point the flag is
removed from the waiting stack, and
evaluation of the previous expression
can be resumed. A left parenthesis
that follows a right parenthesis,) (,
indicates an end of the expression.

The left parenthesis is presumed to
introduce a subfield that has followed
a subscripted set symbol.

Determination of Order: The order in which

the operations in an expression are per-
formed is controlled by the level of paren-
theses and by the hierarchy of the opera-
tors. Operators of the same hierarchical
and parenthetical level are performed from
left to right, as they are encountered by
the scanner.

Since the parenthetical and hierarchical
levels of the operators may dictate a
sequence of operations that is different
from the order in which they are encoun-
tered by the scanner, a pushdown (last in,
first out) table is created for holding
those operations that have been scanned,
but whose execution must be delayed.
Entries in this table consist of a term, an
operator, and a parenthesis-level indica-
tor. There is also an index associated
with the table that identifies the most
recent entry in the table.

In performing required operations, the
hierarchical level of the current operator
is compared with that of the next operator;
if the level of the next operator is high-
er, the current operator, and its terms,
are placed in the waiting stack. Then the
next term and operator become the current
term and operator, and a new next term and
operator are obtained from the scanner.

Whenever the new operator has a lower
hierarchy than the current one, the current
operation is performed. The next term and
operator are then retrieved from the wait-
ing stack, whose index is then reduced.
Parentheses override the hierarchy of

cperators. When a left parenthesis is
encountered in the position of an operator,
the current operator and term are placed in
the waiting stack. The parenthesis level
counter is increased by 1 and placed in the
stack also. The evaluation is continued as
above until a right parenthesis is encoun-
tered. At this time the operation for the
current level of parenthesis in the waiting
stack is performed. When these are com-
pleted, the parenthesis level counter is
reduced by 1.

Logical Expressions: The calling routine
will set a flag when the expression that is
presented to this module is expected to
contain logical or relational operators.
This will occur when the statement is a
SETB or AIF assembler instruction. This
flag signals the coding that is normally
bypassed to be executed, and changes the
way in which certain delimiters are inter-
preted. An unbalanced right parenthesis or
end-of-statement control will now indicate
end of expression, and these methods are
the only legal ways to end the expression.
When a symbol occurs in a position within
the expression normally occupied by an
operator, the symbol is compared with a
table of logical and relational operators.
If it matches one of them, a one-byte code
is used to represent the operator. If no
match occurs, the symbol is assumed to be a
term, and the previous item is compared
with the unary operator NOT. If this is a
match, the unary NOT flag is set; if not,
DIAG is called to indicate that two terms
have been written without an operator, and
an exit is made. The hierarchy of the log-
ical and relational operators is meshed
with the arithmetic operators and evalua-
tion of the expression proceeds exactly as
it does for an all-arithmetic expression,
except that an expanded list of operators
is accepted, and logical terms can only be
combined with other logical terms. The
value of an expression containing a logical
or relational operator is a logical 1 or 0,
depending on whether the expression is TRUE
or FALSE, respectively.

Reduction of Relocatable Expressions: If
there is more than one relocatable term in
an expression, it is possible that they may
be paired off in a way that cancels the
relocatable aspect of the terms and pro-
duces an absolute expression. Every effort
is made to do this. For instance, if terms
A and B are relocatable, and if they occur
in the same control section, the expression
{(A+5~-B)*2 is absolute. (A+B)*¥2 is not,
because the sum of A and B is not fixed,
and the relocatable aspect will not cancel.
When relocatable terms are encountered in
the expression, the location in the dic-
tionary of the term, the operator, and the
parenthesis level are placed in an RLD str-
ing. (If the operator is not ADD or SUB-
TRACT, DIAG is called and an exit is made.)

24
0 15116 23|24 3

Figure 17. Waiting stack format

At each parenthesis level an attempt is
made to pair off all relocatable terms in
the RLD string. If terms are in the same
control section and have opposite signs,
they may be paired. If the resulting value
of a given parenthesis level is absolute,
an add, subtract, multiply, or divide
operation may be performed on it. If it is
relocatable, only an add or subtract opera-
tion may be performed, and any other opera-
tion will cause an error message and an
exit. The final value of an expression
that contains relocatable terms may be
relocatable or absolute, depending on
whether all the relocatable terms can be
paired off. If the final value is relocat-
able, the output will consist of an abso-
lute part plus an RLD string containing the
unpaired relocatable terms and their opera-
tors and the location and number of entries
in the RLD string.

Order of Scan: The sequence in which the
operations in an expression are performed
is determined by parentheses and by the
hierarchy of the operator. A table called
the waiting stack (Figure 17) is created to
hold operations that cannot be performed at
the time they are scanned. Scanning the
expression is done from left to right, and
is performed by BASCAN. On each calling of
this module, it gets the next string, which
usually consists of a term followed by a
delimiter (or operator).

The format of the waiting stack is shown
in Figure 17. Each entry is 8 bytes long
as follows:

Byte Content
0-1 Parenthesis level (number of left
parentheses encountered minus
number of right parentheses
encountered)
2 Operator
Arithmetic Hex value
Addition (+) F4
Subtraction (=) F6

Section 5: Phase I 75

Mualitiplication (%) F8

Division (/) FA

Logical

OR 08

AND OA

NOT oc

LE co

GE AQ

EQ 80

NE 70

LT 40

GT 20

Byte Content
3 Flags

Bit
0 K attribute expression
1 SETB statement
2 Relocatable expression
3 Subscripted expression
4 N attribute expression
5 New parenthesis level
6 Logical operator
7 Arithmetic operator

4-7 Value of the expression following
the operator.

Hierarchy of Operators: The hierarchy of
the next operator is compared with that of
the current operator (which is initialized
to +). If the next operator is equal or
lower than the current operator in hierar-
chy, the operation between the current
value (current term), current operator, and
next term is performed. This result be-
comes the current value, the next operator
becomes the current operator, and a new
string is obtained.

If the next operator is higher than the
current operator in hierarchy, the waiting
stack pointer is stepped by 1 entry (8
bytes); and the current value, current
operator, and current parenthesis level
counter (CPIC) are placed in the stack.
The next operator and next term become the
current value (term) and current operator
and the next string is obtained.

When the delimiter is an end of expres-
sion indicator -- blank or comma, for
instance -- it is treated as an operator of
lowest hierarchy. The operation involving
the current value, current operator, and
next term is performed. The parenthesis
level of the entry in the stack designated
by the waiting stack pointer is compared
with the CPIC. If equal, the operation
between the waiting term, waiting operator,
and current value is performed. The stack
pointer is stepped back by one entry, and
another parenthesis level test is made.
When the parenthesis level in the stack is
not equal to the CPLC, there are no more
items in the stack at this parenthesis
level, and the current value is the final
value for that parenthesis level.

76

Hierarchy of Parentheses : Upon calling

the scan, a null string, consisting of a
delimiter only, with no term, may be
returned. When this delimiter is a left
parenthesis, the CPLC is stepped by +1; the
stack pointer is stepped to the next entry;
the current value, current operator, and
CPLC are put in the stack; zero replaces
the current value; and ADD replaces the
current operator. Then BASCAN is summoned
to fetch the next string.

When the delimiter of a term is a right
parenthesis, this is treated as an operator
of low hierarchy, and the current operation
is performed, and all the operations in the
stack at the current parenthesis level are
performed. Then the CPLC is stepped back
by 1 and scanning continues.

If the next string is a lone right
parenthesis (without a term), all the
operations in the stack at the current
parenthesis level are performed, the CPLC
is stepped back by 1, and scanning is
resumed.

If, following a right parenthesis, the
next string is a null string consisting of
an arithmetic operator, this becomes the
current operator and the next string is
obtained.

Retrieval of Subscripted Values: Two con-

ditions must be satisfied for a term to
have a subscript:

s The right delimiter of the term must be
a left parenthesis.

e The term must be a variable symbol
defined in the dictionary as a sub-
scripted set symbol parameter, or the
system symbol SYSLIST.

If the first condition is met and the
second is not, the left parenthesis is an
expression delimiter (which is also intro-
ducing a subfield expression). If only the
second condition is met, a diagnostic is
issued, and a subscript value of 1 is
assumed. These tests are made while the
item is still in the position of being the
next string. If both conditions for a sub-
scripted term are met, the stack pointer is
stepped by one entry and the current value
and current operator are put in the stack;
then the current value is set to zero and
the current operator is set to +. The CPILC
is stepped by +1, the stack pointer is
stepped by one entry, and the dictionary
location of the term is placed in the
stack. A subscript flag is also put in the
stack. The operator of this term has not
been scanned yet and will be placed in the
stack later. A flag is set which will ind-
icate that any relocatable term that is now
encountered is an error. This expression

is now evaluated in the usual way by cal-
iing BASCAN to get another next string.
Another subscripted term may occur within
this expression. It will be handled as
described above.

When the delimiter of the subscript
expression is encountered, the items wait-
ing in the stack are pulled out and pro-
cessed as usual, until the last one in the
stack is encountered. This last item is
identifiable in two ways: (1) it is the
last item of the current parenthesis level
(indicated by CPLC), and (2) the dictionary
location of the term will be present in the
stack (i.e., this field is nonzexro). The
type field in the dictionary is tested, and
the proper value for the nth subscript is
taken from the dictionary.

For SET symbols and §SYSLIST, the sub-
scripted value is retrieved directly. For
parameters, a subordinate module PSCAN is
called. PSCAN examines the argument string
of the nth sublist operand for validity.
The argument string must be interpretable
as a self-defining term for the subscript
expression to be valid. If the argument is
a self-defining term, its binary value is
obtained by PSCAN and given to this module
upon return. The accumulated value of the
previous expression is in the stack and can
be reached by stepping the stack pointer
back by one entry and reducing the CPLC by
1. The value of the current term comes
from the dictionary (via the subscript) and
the operator for it comes from BASCAN.

Comments: The RLD string consists of
entries of the following format:

7 8 31

OoP

0
r
|
| LOCATION
L

o — ot
[pe——

An entry of this type is completed for each
relocatable symbol in an expression. All
entries for symbols in a given expression
are combined to form the RLD string.

OP represents the operation associated
with a relocatable symbol; this is, by
definition, limited to either subtraction
or addition. LOCATION is a pointer to the
relocatable value item for the symbol and
is the means by which the section number
and displacement of a relocatable symbol
can be procured. There is no limit placed
upon the number of terms that may be con-
tained in an expression.

Errxor Checks:
¢ Undefined symbols

e Invalid expression type for field

» Invalid attributes
e Multiple literals

s Improper formation of logical
expressions

e Invalid self-defining terms
® Unbalanced parentheses
e Consecutive terms and operators

s Number of terms exceeding OS compatibi-
lity limits

e Multiplication or division of relocat-
able terms

e Invalid subscript values
» Invalid variable symbols and parameters
e Missing subscripts

e Arithmetic overflow during evaluation

PSCAN -- Parameter Item Analvzer (CEVPS)

This routine determines whether the
argument string for a parameter consists of
a self-defining term. (See Chart BJ.)
Entry Point: CEVPS

Calling Sequence:

INVOKE APSCAN
ces Other return (4 bytes)
P Self-defining term return

Input Parameters:

R1 Location of parameter item
R2 Value of subscript to apply, if any

EBIN EDEC
ECHAR EHEX

Routines Called:

Exit: Normal

OQutput Parameters:

R1 Value of self-defining term (32
bits)

OPERATION: This routine examines the argu-
ment character string contained in a para-
meter dictionary item. If the character
string exhibits the characteristics of a
self-defining term, the appropriate conver-
sion subroutine (subordinate to EVAL) is
called to convert the term to its proper
value, which is then returned to EVAL as
the value of the parameter symbol. If the
argument string does not appear to be a
self-defining term, an alternate exit is

Section 5: Phase I 77

taken; EVAL then considers the expression
containing the parameter to be unevaluable.

Cocmment: The argument strings for the
majority of parameter symbols are substi-
tuted into the source statement by SSCAN,
prior to assembly of the statement. Howev-
er, when the parameter which SSCAN is sub-
stituting is subscripted, EVAL is called to
provide the value of the subscript. The
assembler language permits parameters to
appear within the subscript; thus EVAL may
encounter a parameter symbol which has not
yet been substituted by SSCAN. In this
case, the parameter is legitimate if its
argument string can be interpreted as a
self-defining term. This routine makes
this determination and provides the value
of the term for EVAL. EVAL allows for

EDEC —-- Decimal Self-Defining Term
Generator (CEVGD)

This routine takes a character string of
numeric digits and converts it into a
binary integer. (See Chart BK.)

Entry Point: CEVGD

Calling Sequence: INVOKE AEDEC

PR Return

Input Parameters:

R1 Length of character string to be
converted, in bytes.

R3 Virtual storage address of first
character of string.

DIAG

Result

nested subscripts. Routines Called:

Exit: Normal
EBIN -- Binary Self-Defining Term Generator Output Parameters: R6
(CEVGB)

This routine converts a character string
of zeros and ones into a binary integer.
(See Chart BK.)

Entry Point: CEVGB

INVOKE AEBIN
PP Return

Calling Sequence:

Input Parameters:

R1 Length of character string to be
converted, in bytes.

R3 Virtual storage address of first
character of string.

Routines Called: DIAG

Exit: Normal

Output Parameter: R6 Result

The length of the character
string is tested against 32. If it exceeds
32, a warning message is printed. Then the
bit string is truncated on the left, and
the rightmost 32 bits are accepted into the
character string. BASCAN has already
checked for any character in the string
which is not zero or not one, and a warning
message was printed. These characters are
transmitted to this module unaltered, and
this module interprets characters with odd
codes as 1 and even codes as 0. Thus, the
letter I is interpreted as 1 and letter ©
as 0.

OPERATION:

78

OPERATION: If the character string exceeds
10 digits, if a character which is not of
the decimal set is encountered, or if the
value of the number exceeds 231-1, a warn-
ing message is printed. Then the routine
exits with 232-1 as the result. Otherwise,
the decimal value is converted to its
binary equivalent, and exit is made.

EHEX -- Hexadecimal Self-Defining Term
Generator (CEVGH)

This routine converts a string of hexa-
decimal characters into its binary equiva-
lent. (See Chart BL.)

Entry Point: CEVGH

Calling Sequence: INVOKE AEHEX

sew Return

Input Parameters:

R1 Length of character string to be
converted, in bytes.

R3 Virtual storage address of first
character of string.

Routines Called: DIAG

Exit: Normal

Result

Output Parameter: R6

The length of the character set
is tested against 8. If it exceeds 8, a
diagnostic message is printed. If it con-
tains fewer than 8 characters, the resul-
tant word is zero filled on the left to
make up the difference. Then the bit

OPERATION:

string is truncated on the left, and the
rightmost 32 bits are accepted into the bit
string and placed in the output word. If a
character that is not of the hexadecimal
set is encountered, a warning diagnostic
message 1s printed. The lower four bits of
the 8-bit character (i.e., the numeric por-
tion) are taken to form the hexadecimal
digit.

ECHAR -- Character Self-Defining Texrm
Generator (CEVGC)

This routine takes a character string
and puts it in the format of a character
self-defining term. (See Chart BL.)}

Entry Point: CEVGC

Calling Sequence: INVOKE AECHAR

eee Return

Input Parameters:

R1 Length of character string to be
converted, in bytes.

R3 Virtual storage address of first
character of string.

Routines called: DIAG

Exit: Normal

Output Parameter: R6 Result

OPERATION: This routine takes a string of
characters and formats them into one full
word. If the input character string con-
tains fewer than four characters, the word
is zero filled on the left, and the charac-
ters are right aligned in the word. If the
input character string exceeds four charac-
ters, a diagnostic message is printed.

Then the character string is truncated on
the left, and the rightmost four characters
in the string are assembled in the output.

SLIT -- Scan for Literal Operand (CEVSL)

This routine scans the operand of a
machine instruction to determine if a 1lit-
eral operand is present. If a literal is
found, its location is added to the current
logical order file entry. (See Chart BM.)

Entry Point: CEVSL

Calling Sequence: INVOKE ASLIT

Routines Called: None

Exit: Normal

OPERATION: This routine is called in batch
assemblies. It uses the logical order file
entry to locate the operand field of the
current statement, then performs a trans-
late and test instruction to locate a lit-
eral operand (denoted by the character =).
If a literal is found, the location of the
= in the source statement is added to the
current logical order file entry.

DLPM -- Dictionary Lookup.and Put (CEVLP)

This routine finds the location of a
given symbol in the main dictionary, and
creates a skeletal dictionary item for the
symbol if it has not been entered previous-
ly. (See Chart BN.)

Entry Point: CEVLP

Calling Sequence: INVOKE ADLPM

Input Parameters:

RO Location of the first byte of the
name to be found or put in the main
dictionary.

R1 Length of the name (in bytes) spe-
cified in RO.

Routines called: None

Exit: Normal

OQutput Parameters:

R2 Location in the main dictionary
where the given name was found or

placed.
R3 Zero = name was placed in
dictionary.
Nonzero = name was already in
dictionary.

The condition code also reflects
this outcome:

4] = name was placed in
dictionary.

1 or 2 = name was already in
dictionary.

R6 Address of hash table value for the
symbol in question.

OPERATION: The main dictionary is searched
for the given name. V-type external
definition items are invisible to this
search. If the name is found and is not in
a transitive item, this module returns to
the calling routine with the location of
the name in the main dictionary in R2. R3
will be nonzero, and the condition code
will be 1 or 2.

Section 5: Phase I 79

If the name is not found or is found in
a transitive item, a skeletal dictionary
entry is created in the next available
location in working segment 2 (via AWORK2).
Specifically, the name is placed in WORK2
through WORK2+7, the location of the next
hash synonym (relative to the base of work-
ing segment 2) is placed in WORK2+9 through
WORK2+11, and WORK2+8 is cleared. AWORK2
is not updated; the caller must update this
value when he completes the entry. The
location of the dictionary item is passed
back to the caller, with an indication as
to whether the symbol previously occurred
in the name field of a macro reference.

DEFSYM —-- Define Location Symbol (CEVSY)

This routine constructs and enters into
the main dictionary a relocatable value
item representing the name field symbol (if
present) of the current source statement.
(See Chart BO.)

Entry Point: CEVSY

Calling Sequence: INVOKE ADFSYM

Routines Called: DIAG, DLPM
Exit: Normal
OPERATION: If the name field is blank or

contains a sequence symbol or BASCAN indi-
cated an error, control is immediately
returned to the caller. Any other type of
entry in the name field is diagnosed as an
error and ignored; an exit to the caller
occurs.

A valid symbol in the name field causes
the main dictionary to be searched for that
symbol. If the same symbol was defined
previously, an error has occurred. A diag-
nostic is issued, the first definition is
honored, and control is returned to the
caller. If the symbol had not been
defined, a dictionary item is created for
that symbol. The type of dictionary item
made and the amount of information included
in the item are a function of the instruc-
tion type being processed. At this point
control is returned to the caller.

DIAG -- Diagnostic Message Processor
(CEVDX)

This routine inserts specified variable
information into a specified diagnostic
message and disposes of the message. (Sece
Chart BP.)

Entry Point: CEVDX

Calling Sequence: INVOKE ADIAG

cee Return

80

Input Parameters:

RO Location of source (nonstandard)
variable information, if any; or
location of operand text of MNOTE
instruction (character following
the opening quote); if standard
variable information is used.

R1 Lengths in bytes of source variable
information. If required by the
message, R1 contains an index into
the standard variable table. If
MNOTE, R1 contains the length of
the operand.

R2 Location of diagnostic entry rela-
tive to base of text locator table.
If sign bit is on, indicates MNOTE
parameters; for MNOTE, bits 24-31
contain the severity code of the
MNOTE instruction.

Routines Called:

¢ Internal - None
¢ External -

CFADCYT Accept diagnostic entry of
language processor control

Exit: Normal
OPERATION: This routine is supplied a mes-

sage number which it uses as an index into
a text locator table starting from location
CEVDX3. Entries in this table are one word
each with the format shown in Figure 18. A
record is kept in SEVCO of the highest
severity code encountered.

Variable information for messages is
limited to eight bytes at the beginning of
the message. The text of the standard
variable information is kept in a table of
doubleword entries (Table 4). An index
into this table is supplied with the mes-
sage number whenever standard variable
information is to be contributed to the
message.

If the variable information is to come
from the source statement, the length and
location of the source characters are
supplied.

16 17 23 24 31
Location Relative
to Base of

Diagnostic Table

"Severity Length of
Code Text

Relative Location of Text

*
A
i
\
Bit Set if Variable
Info Req

Figure 18. Diagnostic text locator entry

format

Table 4. Standard variable information

table
r T R}
i 1 - R1 | 17 - OPERAND |
| 2 - R2 { 18 - L |
| 3 - R3 { 19 - M |
{ 4 - 51] 20 - COMMAND |
i 5 - $2 { 21 - DATA ADR |
i 6 - D1 | 22 - FLAG FLD |
i 7 - D2 | 23 - COUNT |
i 8 - L1 | 24 - EXPONENT |
9 - L2	25 - SCALE
10 - I	26 - BINARY
1 - 12	27 - DECIMAL
12 - Bl	28 - FIX-PT
13 - B2	29 - FLOAT-PT
1s I Mams	31 7vee i
i 16 - OPERAT'N | 32 - SUBSTRNG |
i L J

When the assembly is in conversational
mode, the text of the message desired is
constructed, and the entry in LPC which
accepts diagnostic messages is entered
(CFADC1). Messages are classified as glob-
al and local. After typing a local message
LPC unlocks the terminal keyboard for user
reaction. If the message is global, LPC
does not unlock the keyboard. 1In the
assembler the global mode is not a function
of the content of a message but of the time
when the message is produced. That is, all
messages generated by Phase IIA are effec-
tively global. This condition is indicated
by a mode indicator which is interrogated
before calling LPC.

If the assembly is in batch mode, the
information supplied in its calling
sequence is transcribed to a logical order
file entry. The listing routine in Phase
III will then construct and format the mes-
sage during preparation of the machine lan-
guage listing.

DLKT -- Lookup Temporary Dictiocnary Item
{CEVTK)

This routine finds the location of a
given symbol in the temporary dictionary
for the current macro level. (See Chart
BQ.)

Entry Point: CEVTK

Calling Sequence: INVOKE ADLKT

Input Parameters:

RO Location of the first byte of the
name for which this module is to
look.

R1 Length of the name (in bytes) being
sought.

Routines Called: None

Exit: Normal

OQutput Parameters:

R2 Location of name, if found.
found, R2 contains 0.

If not

The condition code also reflects
this outcome:

0 = not found
1 or 2 = found
OPERATION: The temporary dictionary desig-

nated by ATHSH is searched for the given
name. If the name is found, return is made
to the calling module with the location of
the name in R2. If the name is not found,
return is made with zero in R2.

DPUT -- Put Item in Temporxrary Dictionary
(CEVTP)

This routine creates a skeletal item for
a given symbol in the temporary dictionary
for the current macro level. It assumes
the symbol being put into the dictionary
has been put in storage area W, left-
justified and blank filled on the right.
(See Chart BQ.)
Entry Point: CEVTP

Calling Sequence: INVOKE ADPUT

Routines Called: None

Exit: Normal

Output Parameter:

R2 Location where the new temporary
dictionary item was placed. This
is the same as AWORK1.

OPERATION: The dictionary is not checked
to see if the name has already been placed
there. It is assumed that the caller has
done this, and this routine is called by
the not found path resulting from testing
the output from DLKT. It is assumed that
DILKT (or some other routine) has set the
12-byte work area W. A skeleton dictionary
item is created and placed in the next
available location in working segment 1 via
AWORK1l. Specifically, the name is placed
in WORK1 through WORK1+7, the location of
the next hash synonym (relative to the base
of working segment 1) is placed in WORK1+9
through WORK1+11, and WORK1+8 is cleared.
AWORK1 is not updated; the caller must upd-
ate this value when he fills in the skele-
ton of the entry.

Section 5: Phase I 81

MACLEKT -- Macro Name Dictionary Lookup
(CEVLM)

This routine searches the macro name
dictionary for a given name. (See Chart
BR.)

Entry Point: CEVLM

Calling Sequence: INVOKE ACEVLM

Routines Called: None

Exit: Normal

Output Parameter:

R2 Location of macro name item if the
name was found, otherwise zero.

Condition code also reflects these

conditions:
0 = not found
2 = found
OPERATION: The macro name dictionary is

searched for a name given in location OP.
If the name is found, the location of the
dictionary item is placed in R2, and the
condition code is set to 2. If the name
cannot be found, both R2 and the condition
code are set to 0. Control is returned to
the caller.

MACPUT -- Macro Name Dictionary Put (CEVTM)

This routine inserts an item in the
macro name dictionary and the macro name's
hash number in the macro name hash table.
(See Chart BR.)

Entry Point: CEVTM

Calling Sequence: INVOKE ACEVTM

Routines Called: None

Exit: Normal

Output Parameter:

R2 Location of macro name dictionary
item.

82

OPERATION: This routine assumes MACLKT has
been called and:

®* The hash table entry has been placed in
the work area (W+8).

®* OP contains the macro name.
A skeletal item is created in working seg-
ment 2, the available core address is

updated, and control is returned to the
caller.

DIKM —-- Main Dictionary Lookup (CEVKM)

This routine searches for a given symbol
in the main dictionary and creates a ske-
letal dictionary item for the symbol if it
has not been previously entered. (See
Chart BS.)

Entry Point: CEVKM

Calling Sequence: INVOKE ADLKM

Input Parameters:

RO Location of the first byte of the
name for which this processor is to
look.

R1 Length of the name (in bytes) being
sought.

Routines Called: None

Exit: Normal

Exit Parameters:

R2 Location of name if found. If not

found, R2 contains 0.

The condition code also reflects
this ocutcome:

0 = not found
1 or 2 = found

OPERATION: The main dictionary is searched
for the given name. If the name is found,
return is made to the calling module with
the location of the name in R2. If the
name is not found, return is made with zero
in R2.

INTRODUCTION

During Phase IIA, the processing of
macro instruction statements begun in Phase
I is completed, and system macro defini-
tions are retrieved from the library.

Macro instructions are processed during
Phase IIA without reference to other state-
ments in the assembly; therefore, certain
supplementary information must be main-
tained. This supplementary information is
obtained from reprocessing all GBL declara-
tions, global SET instructions, section
name changes, and PRINT instructions and
combining them with macro instructions in
the proper order.

Macro statement generation is accomp-
lished by substituting the character string
values of the current arguments for the
corresponding parameters in the definition.
The macro definition statements remain in
the sequenced source statement area of
assembler virtual storage. Source state-
ments generated by macro instructions are
also retained in assembler virtual storage;
they do not become part of the set of
sequenced statements.

Each new symbolic statement is processed
and assembled as if it had been part of the
user's original source program. Most of
the processing modules used during Phase
IIA are the same as those used during Phase
I. The Phase IIA control module determines
the order and origin of source statements.

All macro instructions have been
expanded before exiting from Phase IIA; the
logical order of the assembly includes
source statements for all generated lines.

Figure 19 illustrates the module rela-
tionships in Phase IIA. All the relation-
ships between STAN and the downward asso-
ciated modules are as shown in Figure 16,
except for MACREF. Routine relationships
for MACREF that are unique to Phase IIA
processing are as shown in Figure 19.

a detailed account of the interaction
between STAN and MACREF, see MACREF module
description.

For

PARAMAC constructs a temporary {(or macro
level) dictionary for each user level and
each inner macro instruction.

MACREF, under the control of Phase IIA,
searches a macro library index and retri-
eves model statements from the associated

SECTION 6: PHASE IIA

library. Control is then returned to STAN
to process the model statements.

Table 5 is a decision table listing the

criteria for entering those routines unique
to Phase IIA.

CONVERSATIONAL CONTROL

If the assembly mode is conversational,
the transitive item chain in the main dic-
tionary is examined at the end of Phase IIA
for undefined symbols, appropriate diag-
nostic messages are passed to the LPC, and
return is made to the initial LPC call.

The conversational user may employ other
facilities of the system to stop, correct,
or continue the assembly.

ROUTINES

PHASE IIA -- Phase IIA Control (CEVPB)

This routine controls the expansion of
macro instructions. As a corollary to this
processing, it reevaluates statements that
affect global variable symbols and main-
tains a history of control section changes.
Before concluding, global diagnostic mes-
sages are presented to the conversational
user, and the language processor control is
called to determine whether to continue the

assembly. (See Chart B<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>